Optimal. Leaf size=16 \[ x+\frac {\frac {-26+x}{x}+x}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {26-x-x^2+\left (26+x^2\right ) \log (x)+x^2 \log ^2(x)}{x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {26-x-x^2}{x^2 \log ^2(x)}+\frac {26+x^2}{x^2 \log (x)}\right ) \, dx\\ &=x+\int \frac {26-x-x^2}{x^2 \log ^2(x)} \, dx+\int \frac {26+x^2}{x^2 \log (x)} \, dx\\ &=x+\int \left (\frac {1}{\log (x)}+\frac {26}{x^2 \log (x)}\right ) \, dx+\int \frac {26-x-x^2}{x^2 \log ^2(x)} \, dx\\ &=x+26 \int \frac {1}{x^2 \log (x)} \, dx+\int \frac {26-x-x^2}{x^2 \log ^2(x)} \, dx+\int \frac {1}{\log (x)} \, dx\\ &=x+\text {li}(x)+26 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )+\int \frac {26-x-x^2}{x^2 \log ^2(x)} \, dx\\ &=x+26 \text {Ei}(-\log (x))+\text {li}(x)+\int \frac {26-x-x^2}{x^2 \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 1.31 \begin {gather*} x+\frac {1}{\log (x)}-\frac {26}{x \log (x)}+\frac {x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 20, normalized size = 1.25 \begin {gather*} \frac {x^{2} \log \relax (x) + x^{2} + x - 26}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 16, normalized size = 1.00 \begin {gather*} x + \frac {x^{2} + x - 26}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 17, normalized size = 1.06
method | result | size |
risch | \(x +\frac {x^{2}+x -26}{x \ln \relax (x )}\) | \(17\) |
norman | \(\frac {-26+x +x^{2}+x^{2} \ln \relax (x )}{x \ln \relax (x )}\) | \(21\) |
default | \(x +\frac {x}{\ln \relax (x )}+\frac {1}{\ln \relax (x )}-\frac {26}{x \ln \relax (x )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.55, size = 30, normalized size = 1.88 \begin {gather*} x + \frac {1}{\log \relax (x)} + 26 \, {\rm Ei}\left (-\log \relax (x)\right ) + {\rm Ei}\left (\log \relax (x)\right ) - \Gamma \left (-1, -\log \relax (x)\right ) - 26 \, \Gamma \left (-1, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.49, size = 16, normalized size = 1.00 \begin {gather*} x+\frac {x^2+x-26}{x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 12, normalized size = 0.75 \begin {gather*} x + \frac {x^{2} + x - 26}{x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________