Optimal. Leaf size=30 \[ -1+\frac {1}{e^{x^2 (4+x)^2} (3-x)+\log \left (-2 x+x^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.36, antiderivative size = 39, normalized size of antiderivative = 1.30, number of steps used = 2, number of rules used = 2, integrand size = 148, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {6741, 6686} \begin {gather*} \frac {1}{-e^{x^2 (x+4)^2} x+3 e^{x^2 (x+4)^2}+\log (-((2-x) x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6686
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2+2 x-e^{16 x^2+8 x^3+x^4} \left (-2 x+193 x^2-16 x^3-64 x^4+4 x^5+4 x^6\right )}{(2-x) x \left (3 e^{x^2 (4+x)^2}-e^{x^2 (4+x)^2} x+\log ((-2+x) x)\right )^2} \, dx\\ &=\frac {1}{3 e^{x^2 (4+x)^2}-e^{x^2 (4+x)^2} x+\log (-((2-x) x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 28, normalized size = 0.93 \begin {gather*} -\frac {1}{e^{x^2 (4+x)^2} (-3+x)-\log ((-2+x) x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 34, normalized size = 1.13 \begin {gather*} -\frac {1}{{\left (x - 3\right )} e^{\left (x^{4} + 8 \, x^{3} + 16 \, x^{2}\right )} - \log \left (x^{2} - 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.15, size = 49, normalized size = 1.63 \begin {gather*} -\frac {1}{x e^{\left (x^{4} + 8 \, x^{3} + 16 \, x^{2}\right )} - 3 \, e^{\left (x^{4} + 8 \, x^{3} + 16 \, x^{2}\right )} - \log \left (x^{2} - 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.08, size = 118, normalized size = 3.93
method | result | size |
risch | \(\frac {2 i}{\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (i \left (x -2\right ) x \right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -2\right ) x \right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (i \left (x -2\right ) x \right )^{2}+\pi \mathrm {csgn}\left (i \left (x -2\right ) x \right )^{3}-2 i x \,{\mathrm e}^{\left (4+x \right )^{2} x^{2}}+6 i {\mathrm e}^{\left (4+x \right )^{2} x^{2}}+2 i \ln \relax (x )+2 i \ln \left (x -2\right )}\) | \(118\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 34, normalized size = 1.13 \begin {gather*} -\frac {1}{{\left (x - 3\right )} e^{\left (x^{4} + 8 \, x^{3} + 16 \, x^{2}\right )} - \log \left (x - 2\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.85, size = 31, normalized size = 1.03 \begin {gather*} \frac {1}{\ln \left (x^2-2\,x\right )-{\mathrm {e}}^{x^4+8\,x^3+16\,x^2}\,\left (x-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 29, normalized size = 0.97 \begin {gather*} - \frac {1}{\left (x - 3\right ) e^{x^{4} + 8 x^{3} + 16 x^{2}} - \log {\left (x^{2} - 2 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________