Optimal. Leaf size=29 \[ 9 \left (3+x-\frac {1}{\left (x+\frac {x}{x+5 (i \pi +\log (4))^2}\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.49, antiderivative size = 182, normalized size of antiderivative = 6.28, number of steps used = 3, number of rules used = 2, integrand size = 184, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.011, Rules used = {6, 2074} \begin {gather*} -\frac {225 (\pi -i \log (4))^4}{x^2 \left (1-5 \pi ^2+5 \log ^2(4)+10 i \pi \log (4)\right )^2}+9 x-\frac {90 (\pi -i \log (4))^2}{\left (1-5 \pi ^2+5 \log ^2(4)+10 i \pi \log (4)\right )^3 \left (x-5 \pi ^2+1+5 \log ^2(4)+10 i \pi \log (4)\right )}-\frac {9}{\left (1-5 \pi ^2+5 \log ^2(4)+10 i \pi \log (4)\right )^2 \left (x-5 \pi ^2+1+5 \log ^2(4)+10 i \pi \log (4)\right )^2}+\frac {90 (\pi -i \log (4))^2}{x \left (1-5 \pi ^2+5 \log ^2(4)+10 i \pi \log (4)\right )^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {27 x^3+27 x^4+27 x^5+9 x^6+\left (90 x+270 x^2+135 x^3+270 x^4+135 x^5\right ) (i \pi +\log (4))^2+\left (450+1350 x+675 x^3+675 x^4\right ) (i \pi +\log (4))^4+\left (2250+1125 x^3\right ) (i \pi +\log (4))^6}{3 x^4+3 x^5+x^6+\left (15 x^3+30 x^4+15 x^5\right ) (i \pi +\log (4))^2+\left (75 x^3+75 x^4\right ) (i \pi +\log (4))^4+x^3 \left (1+125 (i \pi +\log (4))^6\right )} \, dx\\ &=\int \left (9+\frac {90 (\pi -i \log (4))^2}{x^2 \left (-1+5 \pi ^2-10 i \pi \log (4)-5 \log ^2(4)\right )^3}+\frac {450 (\pi -i \log (4))^4}{x^3 \left (-1+5 \pi ^2-10 i \pi \log (4)-5 \log ^2(4)\right )^2}-\frac {18}{\left (-1+5 \pi ^2-10 i \pi \log (4)-5 \log ^2(4)\right )^2 \left (-1+5 \pi ^2-x-10 i \pi \log (4)-5 \log ^2(4)\right )^3}-\frac {90 (\pi -i \log (4))^2}{\left (-1+5 \pi ^2-10 i \pi \log (4)-5 \log ^2(4)\right )^3 \left (-1+5 \pi ^2-x-10 i \pi \log (4)-5 \log ^2(4)\right )^2}\right ) \, dx\\ &=9 x+\frac {90 (\pi -i \log (4))^2}{x \left (1-5 \pi ^2+10 i \pi \log (4)+5 \log ^2(4)\right )^3}-\frac {225 (\pi -i \log (4))^4}{x^2 \left (1-5 \pi ^2+10 i \pi \log (4)+5 \log ^2(4)\right )^2}-\frac {9}{\left (1-5 \pi ^2+10 i \pi \log (4)+5 \log ^2(4)\right )^2 \left (1-5 \pi ^2+x+10 i \pi \log (4)+5 \log ^2(4)\right )^2}-\frac {90 (\pi -i \log (4))^2}{\left (1-5 \pi ^2+10 i \pi \log (4)+5 \log ^2(4)\right )^3 \left (1-5 \pi ^2+x+10 i \pi \log (4)+5 \log ^2(4)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.20, size = 163, normalized size = 5.62 \begin {gather*} \frac {9 \left (-x^2+x^5+25 \pi ^4 \left (-1+x^3\right )-100 i \pi ^3 \left (-1+x^3\right ) \log (4)-10 x \log ^2(4)-25 \log ^4(4)+2 x^4 \left (1+5 \log ^2(4)\right )+x^3 \left (1+5 \log ^2(4)\right )^2+20 i \pi \log (4) \left (-x+x^4-5 \log ^2(4)+x^3 \left (1+5 \log ^2(4)\right )\right )-10 \pi ^2 \left (-x+x^4-15 \log ^2(4)+x^3 \left (1+15 \log ^2(4)\right )\right )\right )}{x^2 \left (1-5 \pi ^2+x+10 i \pi \log (4)+5 \log ^2(4)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 240, normalized size = 8.28 \begin {gather*} -\frac {9 \, {\left (2 \, {\left (5 \, \pi ^{2} - 1\right )} x^{4} - x^{5} - 400 \, {\left (x^{3} - 1\right )} \log \relax (2)^{4} + 25 \, \pi ^{4} - {\left (25 \, \pi ^{4} - 10 \, \pi ^{2} + 1\right )} x^{3} + 800 \, {\left (i \, \pi - i \, \pi x^{3}\right )} \log \relax (2)^{3} - 10 \, \pi ^{2} x + 40 \, {\left ({\left (15 \, \pi ^{2} - 1\right )} x^{3} - x^{4} - 15 \, \pi ^{2} + x\right )} \log \relax (2)^{2} + x^{2} + 40 \, {\left (-i \, \pi x^{4} + {\left (-i \, \pi + 5 i \, \pi ^{3}\right )} x^{3} - 5 i \, \pi ^{3} + i \, \pi x\right )} \log \relax (2)\right )}}{800 i \, \pi x^{2} \log \relax (2)^{3} + 400 \, x^{2} \log \relax (2)^{4} - 2 \, {\left (5 \, \pi ^{2} - 1\right )} x^{3} + x^{4} + {\left (25 \, \pi ^{4} - 10 \, \pi ^{2} + 1\right )} x^{2} - 40 \, {\left ({\left (15 \, \pi ^{2} - 1\right )} x^{2} - x^{3}\right )} \log \relax (2)^{2} - 40 \, {\left (-i \, \pi x^{3} + {\left (-i \, \pi + 5 i \, \pi ^{3}\right )} x^{2}\right )} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 93, normalized size = 3.21 \begin {gather*} 9 \, x - \frac {9 \, {\left (25 \, \pi ^{4} - 200 i \, \pi ^{3} \log \relax (2) - 600 \, \pi ^{2} \log \relax (2)^{2} + 800 i \, \pi \log \relax (2)^{3} + 400 \, \log \relax (2)^{4} - 10 \, \pi ^{2} x + 40 i \, \pi x \log \relax (2) + 40 \, x \log \relax (2)^{2} + x^{2}\right )}}{{\left (5 \, \pi ^{2} x - 20 i \, \pi x \log \relax (2) - 20 \, x \log \relax (2)^{2} - x^{2} - x\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 2.32, size = 155, normalized size = 5.34
method | result | size |
risch | \(9 x +\frac {-\frac {9 x^{2}}{25}-\left (\frac {72 i \pi \ln \relax (2)}{5}-\frac {18 \pi ^{2}}{5}+\frac {72 \ln \relax (2)^{2}}{5}\right ) x +72 i \pi ^{3} \ln \relax (2)-288 i \pi \ln \relax (2)^{3}-9 \pi ^{4}+216 \pi ^{2} \ln \relax (2)^{2}-144 \ln \relax (2)^{4}}{x^{2} \left (-8 i \pi ^{3} \ln \relax (2)+32 i \pi \ln \relax (2)^{3}+\pi ^{4}-24 \pi ^{2} \ln \relax (2)^{2}+\frac {8 i \pi \ln \relax (2) x}{5}+16 \ln \relax (2)^{4}-\frac {2 x \,\pi ^{2}}{5}+\frac {8 i \pi \ln \relax (2)}{5}+\frac {8 x \ln \relax (2)^{2}}{5}-\frac {2 \pi ^{2}}{5}+\frac {8 \ln \relax (2)^{2}}{5}+\frac {x^{2}}{25}+\frac {2 x}{25}+\frac {1}{25}\right )}\) | \(155\) |
default | \(9 x -\frac {9 \left (6000 i \pi ^{5} \ln \relax (2)+96000 i \pi \ln \relax (2)^{5}-2240000 i \pi ^{3} \ln \relax (2)^{5}-80000 i \pi ^{3} \ln \relax (2)^{3}+1250 \pi ^{8}-140000 \pi ^{6} \ln \relax (2)^{2}+1400000 \pi ^{4} \ln \relax (2)^{4}-2240000 \pi ^{2} \ln \relax (2)^{6}+320000 \ln \relax (2)^{8}+560000 i \pi ^{5} \ln \relax (2)^{3}-20000 i \pi ^{7} \ln \relax (2)+1280000 i \pi \ln \relax (2)^{7}-500 \pi ^{6}+30000 \pi ^{4} \ln \relax (2)^{2}-120000 \pi ^{2} \ln \relax (2)^{4}+32000 \ln \relax (2)^{6}-400 i \pi ^{3} \ln \relax (2)+1600 i \pi \ln \relax (2)^{3}+50 \pi ^{4}-1200 \pi ^{2} \ln \relax (2)^{2}+800 \ln \relax (2)^{4}\right )}{2 \left (-20 i \pi \ln \relax (2)+5 \pi ^{2}-20 \ln \relax (2)^{2}-1\right )^{4} x^{2}}-\frac {9 \left (-400 i \pi ^{3} \ln \relax (2)+1600 i \pi \ln \relax (2)^{3}+50 \pi ^{4}-1200 \pi ^{2} \ln \relax (2)^{2}+800 \ln \relax (2)^{4}+40 i \pi \ln \relax (2)-10 \pi ^{2}+40 \ln \relax (2)^{2}\right )}{\left (-20 i \pi \ln \relax (2)+5 \pi ^{2}-20 \ln \relax (2)^{2}-1\right )^{4} x}-\frac {9 \left (-400 i \pi ^{3} \ln \relax (2)+1600 i \pi \ln \relax (2)^{3}+50 \pi ^{4}-1200 \pi ^{2} \ln \relax (2)^{2}+800 \ln \relax (2)^{4}+80 i \pi \ln \relax (2)-20 \pi ^{2}+80 \ln \relax (2)^{2}+2\right )}{2 \left (-20 i \pi \ln \relax (2)+5 \pi ^{2}-20 \ln \relax (2)^{2}-1\right )^{4} \left (-5 \pi ^{2}+20 i \pi \ln \relax (2)+20 \ln \relax (2)^{2}+x +1\right )^{2}}-\frac {9 \left (400 i \pi ^{3} \ln \relax (2)-1600 i \pi \ln \relax (2)^{3}-50 \pi ^{4}+1200 \pi ^{2} \ln \relax (2)^{2}-800 \ln \relax (2)^{4}-40 i \pi \ln \relax (2)+10 \pi ^{2}-40 \ln \relax (2)^{2}\right )}{\left (-20 i \pi \ln \relax (2)+5 \pi ^{2}-20 \ln \relax (2)^{2}-1\right )^{4} \left (-5 \pi ^{2}+20 i \pi \ln \relax (2)+20 \ln \relax (2)^{2}+x +1\right )}\) | \(476\) |
norman | \(\frac {\left (-2250 \pi ^{4}+25200 \pi ^{2} \ln \relax (2)^{2}-36000 \ln \relax (2)^{4}+900 \pi ^{2}-3600 \ln \relax (2)^{2}-90\right ) x^{5}+\left (4500 \pi ^{6}+18000 \pi ^{4} \ln \relax (2)^{2}-72000 \pi ^{2} \ln \relax (2)^{4}-288000 \ln \relax (2)^{6}+3600 i \pi ^{3} \ln \relax (2)-14400 i \pi \ln \relax (2)^{3}-1350 \pi ^{4}+3600 \pi ^{2} \ln \relax (2)^{2}-21600 \ln \relax (2)^{4}-360 i \pi \ln \relax (2)+90 \pi ^{2}-360 \ln \relax (2)^{2}\right ) x +\left (22500 \pi ^{6}-198000 \pi ^{4} \ln \relax (2)^{2}+792000 \pi ^{2} \ln \relax (2)^{4}-1440000 \ln \relax (2)^{6}-13500 \pi ^{4}+93600 \pi ^{2} \ln \relax (2)^{2}-216000 \ln \relax (2)^{4}+2700 \pi ^{2}-10800 \ln \relax (2)^{2}-189\right ) x^{4}+\left (-84375 \pi ^{8}+90000 \pi ^{6} \ln \relax (2)^{2}+3420000 \pi ^{4} \ln \relax (2)^{4}+1440000 \pi ^{2} \ln \relax (2)^{6}-21600000 \ln \relax (2)^{8}+67500 \pi ^{6}-306000 \pi ^{4} \ln \relax (2)^{2}+1224000 \pi ^{2} \ln \relax (2)^{4}-4320000 \ln \relax (2)^{6}-20250 \pi ^{4}+111600 \pi ^{2} \ln \relax (2)^{2}-324000 \ln \relax (2)^{4}+2880 \pi ^{2}-11520 \ln \relax (2)^{2}-153\right ) x^{3}+\left (112500 \pi ^{10}+1350000 \pi ^{8} \ln \relax (2)^{2}+3600000 \pi ^{6} \ln \relax (2)^{4}-14400000 \pi ^{4} \ln \relax (2)^{6}-86400000 \pi ^{2} \ln \relax (2)^{8}-115200000 \ln \relax (2)^{10}-112500 \pi ^{8}-360000 \pi ^{6} \ln \relax (2)^{2}+720000 \pi ^{4} \ln \relax (2)^{4}-5760000 \pi ^{2} \ln \relax (2)^{6}-28800000 \ln \relax (2)^{8}+45000 \pi ^{6}-108000 \pi ^{4} \ln \relax (2)^{2}+432000 \pi ^{2} \ln \relax (2)^{4}-2880000 \ln \relax (2)^{6}-10350 \pi ^{4}+46800 \pi ^{2} \ln \relax (2)^{2}-165600 \ln \relax (2)^{4}-360 i \pi \ln \relax (2)+1170 \pi ^{2}-4680 \ln \relax (2)^{2}-45\right ) x^{2}+9 x^{7}-5625 \pi ^{8}-90000 \pi ^{6} \ln \relax (2)^{2}-540000 \pi ^{4} \ln \relax (2)^{4}-1440000 \pi ^{2} \ln \relax (2)^{6}-1440000 \ln \relax (2)^{8}-9000 i \pi ^{5} \ln \relax (2)-144000 i \pi \ln \relax (2)^{5}-72000 i \pi ^{3} \ln \relax (2)^{3}+2250 \pi ^{6}+9000 \pi ^{4} \ln \relax (2)^{2}-36000 \pi ^{2} \ln \relax (2)^{4}-144000 \ln \relax (2)^{6}+1800 i \pi ^{3} \ln \relax (2)-7200 i \pi \ln \relax (2)^{3}-225 \pi ^{4}+5400 \pi ^{2} \ln \relax (2)^{2}-3600 \ln \relax (2)^{4}}{x^{2} \left (25 \pi ^{4}+200 \pi ^{2} \ln \relax (2)^{2}+400 \ln \relax (2)^{4}-10 x \,\pi ^{2}+40 x \ln \relax (2)^{2}-10 \pi ^{2}+40 \ln \relax (2)^{2}+x^{2}+2 x +1\right )^{2}}\) | \(643\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 149, normalized size = 5.14 \begin {gather*} 9 \, x + \frac {9 \, {\left (25 \, \pi ^{4} - 200 i \, \pi ^{3} \log \relax (2) - 600 \, \pi ^{2} \log \relax (2)^{2} + 800 i \, \pi \log \relax (2)^{3} + 400 \, \log \relax (2)^{4} - 10 \, {\left (\pi ^{2} - 4 i \, \pi \log \relax (2) - 4 \, \log \relax (2)^{2}\right )} x + x^{2}\right )}}{2 \, {\left (5 \, \pi ^{2} - 20 i \, \pi \log \relax (2) - 20 \, \log \relax (2)^{2} - 1\right )} x^{3} - x^{4} - {\left (25 \, \pi ^{4} + 800 i \, \pi \log \relax (2)^{3} + 400 \, \log \relax (2)^{4} - 40 \, {\left (15 \, \pi ^{2} - 1\right )} \log \relax (2)^{2} - 10 \, \pi ^{2} - 40 \, {\left (-i \, \pi + 5 i \, \pi ^{3}\right )} \log \relax (2) + 1\right )} x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 20.40, size = 640, normalized size = 22.07 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 36.28, size = 168, normalized size = 5.79 \begin {gather*} 9 x + \frac {9 x^{2} + x \left (- 90 \pi ^{2} + 360 \log {\relax (2 )}^{2} + 360 i \pi \log {\relax (2 )}\right ) - 5400 \pi ^{2} \log {\relax (2 )}^{2} + 3600 \log {\relax (2 )}^{4} + 225 \pi ^{4} - 1800 i \pi ^{3} \log {\relax (2 )} + 7200 i \pi \log {\relax (2 )}^{3}}{- x^{4} + x^{3} \left (- 40 \log {\relax (2 )}^{2} - 2 + 10 \pi ^{2} - 40 i \pi \log {\relax (2 )}\right ) + x^{2} \left (- 25 \pi ^{4} - 400 \log {\relax (2 )}^{4} - 40 \log {\relax (2 )}^{2} - 1 + 10 \pi ^{2} + 600 \pi ^{2} \log {\relax (2 )}^{2} - 800 i \pi \log {\relax (2 )}^{3} - 40 i \pi \log {\relax (2 )} + 200 i \pi ^{3} \log {\relax (2 )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________