Optimal. Leaf size=30 \[ 7+2 x-\frac {x}{4+\left (5+e^{2-e^4}\right )^2+x}-\log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.22, antiderivative size = 64, normalized size of antiderivative = 2.13, number of steps used = 3, number of rules used = 2, integrand size = 158, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.013, Rules used = {6, 2074} \begin {gather*} 2 x+\frac {e^4+29 e^{2 e^4}+10 e^{2+e^4}}{e^{2 e^4} x+10 e^{2+e^4}+29 e^{2 e^4}+e^4}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+2 x+e^{-2+e^4} (-20+40 x)+e^{-4+2 e^4} \left (-158+313 x+4 x^2\right )+e^{-6+3 e^4} \left (-580+1130 x+40 x^2\right )+e^{-8+4 e^4} \left (-841+1595 x+115 x^2+2 x^3\right )}{\left (1+20 e^{-2+e^4}\right ) x+e^{-4+2 e^4} \left (158 x+2 x^2\right )+e^{-6+3 e^4} \left (580 x+20 x^2\right )+e^{-8+4 e^4} \left (841 x+58 x^2+x^3\right )} \, dx\\ &=\int \left (2-\frac {1}{x}-\frac {e^{2 e^4} \left (e^4+29 e^{2 e^4}+10 e^{2+e^4}\right )}{\left (e^4+29 e^{2 e^4}+10 e^{2+e^4}+e^{2 e^4} x\right )^2}\right ) \, dx\\ &=2 x+\frac {e^4+29 e^{2 e^4}+10 e^{2+e^4}}{e^4+29 e^{2 e^4}+10 e^{2+e^4}+e^{2 e^4} x}-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.15, size = 97, normalized size = 3.23 \begin {gather*} \frac {e^4 (1+2 x)+10 e^{2+e^4} (1+2 x)+e^{2 e^4} \left (29+58 x+2 x^2\right )-\left (e^4+10 e^{2+e^4}+e^{2 e^4} (29+x)\right ) \log (x)}{e^4+10 e^{2+e^4}+e^{2 e^4} (29+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 82, normalized size = 2.73 \begin {gather*} \frac {{\left (2 \, x^{2} + 58 \, x + 29\right )} e^{\left (2 \, e^{4} - 4\right )} + 10 \, {\left (2 \, x + 1\right )} e^{\left (e^{4} - 2\right )} - {\left ({\left (x + 29\right )} e^{\left (2 \, e^{4} - 4\right )} + 10 \, e^{\left (e^{4} - 2\right )} + 1\right )} \log \relax (x) + 2 \, x + 1}{{\left (x + 29\right )} e^{\left (2 \, e^{4} - 4\right )} + 10 \, e^{\left (e^{4} - 2\right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.23, size = 104, normalized size = 3.47
method | result | size |
norman | \(\frac {2 \,{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{-4} x^{2}-{\mathrm e}^{-2 \,{\mathrm e}^{4}} {\mathrm e}^{4} \left (1653 \,{\mathrm e}^{4 \,{\mathrm e}^{4}} {\mathrm e}^{-8}+1150 \,{\mathrm e}^{3 \,{\mathrm e}^{4}} {\mathrm e}^{-6}+315 \,{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{-4}+40 \,{\mathrm e}^{{\mathrm e}^{4}} {\mathrm e}^{-2}+2\right )}{{\mathrm e}^{2 \,{\mathrm e}^{4}-4} x +29 \,{\mathrm e}^{2 \,{\mathrm e}^{4}-4}+10 \,{\mathrm e}^{{\mathrm e}^{4}-2}+1}-\ln \relax (x )\) | \(104\) |
risch | \(2 x +\frac {29 \,{\mathrm e}^{2 \,{\mathrm e}^{4}-4}}{{\mathrm e}^{2 \,{\mathrm e}^{4}-4} x +29 \,{\mathrm e}^{2 \,{\mathrm e}^{4}-4}+10 \,{\mathrm e}^{{\mathrm e}^{4}-2}+1}+\frac {10 \,{\mathrm e}^{{\mathrm e}^{4}-2}}{{\mathrm e}^{2 \,{\mathrm e}^{4}-4} x +29 \,{\mathrm e}^{2 \,{\mathrm e}^{4}-4}+10 \,{\mathrm e}^{{\mathrm e}^{4}-2}+1}+\frac {1}{{\mathrm e}^{2 \,{\mathrm e}^{4}-4} x +29 \,{\mathrm e}^{2 \,{\mathrm e}^{4}-4}+10 \,{\mathrm e}^{{\mathrm e}^{4}-2}+1}-\ln \relax (x )\) | \(112\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 52, normalized size = 1.73 \begin {gather*} 2 \, x + \frac {e^{4} + 29 \, e^{\left (2 \, e^{4}\right )} + 10 \, e^{\left (e^{4} + 2\right )}}{x e^{\left (2 \, e^{4}\right )} + e^{4} + 29 \, e^{\left (2 \, e^{4}\right )} + 10 \, e^{\left (e^{4} + 2\right )}} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.81, size = 48, normalized size = 1.60 \begin {gather*} 2\,x-\ln \relax (x)+\frac {10\,{\mathrm {e}}^{2-{\mathrm {e}}^4}+{\mathrm {e}}^{4-2\,{\mathrm {e}}^4}+29}{x+10\,{\mathrm {e}}^{2-{\mathrm {e}}^4}+{\mathrm {e}}^{4-2\,{\mathrm {e}}^4}+29} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.37, size = 58, normalized size = 1.93 \begin {gather*} 2 x - \log {\relax (x )} + \frac {e^{4} + 10 e^{2} e^{e^{4}} + 29 e^{2 e^{4}}}{x e^{2 e^{4}} + e^{4} + 10 e^{2} e^{e^{4}} + 29 e^{2 e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________