Optimal. Leaf size=17 \[ \frac {4}{-x+\log \left (5 \left (6+e^x+x\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {6688, 12, 6686} \begin {gather*} -\frac {4}{x-\log \left (5 \left (x+e^x+6\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 (5+x)}{\left (6+e^x+x\right ) \left (x-\log \left (5 \left (6+e^x+x\right )\right )\right )^2} \, dx\\ &=4 \int \frac {5+x}{\left (6+e^x+x\right ) \left (x-\log \left (5 \left (6+e^x+x\right )\right )\right )^2} \, dx\\ &=-\frac {4}{x-\log \left (5 \left (6+e^x+x\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 17, normalized size = 1.00 \begin {gather*} -\frac {4}{x-\log \left (5 \left (6+e^x+x\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 18, normalized size = 1.06 \begin {gather*} -\frac {4}{x - \log \left (5 \, x + 5 \, e^{x} + 30\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 18, normalized size = 1.06 \begin {gather*} -\frac {4}{x - \log \left (5 \, x + 5 \, e^{x} + 30\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 1.12
method | result | size |
risch | \(-\frac {4}{x -\ln \left (5 \,{\mathrm e}^{x}+5 x +30\right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 18, normalized size = 1.06 \begin {gather*} -\frac {4}{x - \log \relax (5) - \log \left (x + e^{x} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.39, size = 18, normalized size = 1.06 \begin {gather*} -\frac {4}{x-\ln \left (5\,x+5\,{\mathrm {e}}^x+30\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 14, normalized size = 0.82 \begin {gather*} \frac {4}{- x + \log {\left (5 x + 5 e^{x} + 30 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________