Optimal. Leaf size=25 \[ -4-x+x^x+\frac {x}{\left (e^4+x\right ) \log (2 x \log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 2.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e^4-x+\left (-e^4-x\right ) \log (x)+e^4 \log (x) \log (2 x \log (x))+\left (\left (-e^8-2 e^4 x-x^2\right ) \log (x)+x^x \left (\left (e^8+2 e^4 x+x^2\right ) \log (x)+\left (e^8+2 e^4 x+x^2\right ) \log ^2(x)\right )\right ) \log ^2(2 x \log (x))}{\left (e^8+2 e^4 x+x^2\right ) \log (x) \log ^2(2 x \log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^4-x+\left (-e^4-x\right ) \log (x)+e^4 \log (x) \log (2 x \log (x))+\left (\left (-e^8-2 e^4 x-x^2\right ) \log (x)+x^x \left (\left (e^8+2 e^4 x+x^2\right ) \log (x)+\left (e^8+2 e^4 x+x^2\right ) \log ^2(x)\right )\right ) \log ^2(2 x \log (x))}{\left (e^4+x\right )^2 \log (x) \log ^2(2 x \log (x))} \, dx\\ &=\int \frac {-e^4-x+x^x \left (e^4+x\right )^2 \log ^2(x) \log ^2(2 x \log (x))+\log (x) \left (-e^4-x+e^4 \log (2 x \log (x))+\left (e^4+x\right )^2 \left (-1+x^x\right ) \log ^2(2 x \log (x))\right )}{\left (e^4+x\right )^2 \log (x) \log ^2(2 x \log (x))} \, dx\\ &=\int \left (-1+x^x (1+\log (x))-\frac {e^4}{\left (e^4+x\right )^2 \log ^2(2 x \log (x))}-\frac {x}{\left (e^4+x\right )^2 \log ^2(2 x \log (x))}-\frac {e^4}{\left (e^4+x\right )^2 \log (x) \log ^2(2 x \log (x))}-\frac {x}{\left (e^4+x\right )^2 \log (x) \log ^2(2 x \log (x))}+\frac {e^4}{\left (e^4+x\right )^2 \log (2 x \log (x))}\right ) \, dx\\ &=-x-e^4 \int \frac {1}{\left (e^4+x\right )^2 \log ^2(2 x \log (x))} \, dx-e^4 \int \frac {1}{\left (e^4+x\right )^2 \log (x) \log ^2(2 x \log (x))} \, dx+e^4 \int \frac {1}{\left (e^4+x\right )^2 \log (2 x \log (x))} \, dx+\int x^x (1+\log (x)) \, dx-\int \frac {x}{\left (e^4+x\right )^2 \log ^2(2 x \log (x))} \, dx-\int \frac {x}{\left (e^4+x\right )^2 \log (x) \log ^2(2 x \log (x))} \, dx\\ &=-x-e^4 \int \frac {1}{\left (e^4+x\right )^2 \log ^2(2 x \log (x))} \, dx-e^4 \int \frac {1}{\left (e^4+x\right )^2 \log (x) \log ^2(2 x \log (x))} \, dx+e^4 \int \frac {1}{\left (e^4+x\right )^2 \log (2 x \log (x))} \, dx+\int \left (x^x+x^x \log (x)\right ) \, dx-\int \left (-\frac {e^4}{\left (e^4+x\right )^2 \log ^2(2 x \log (x))}+\frac {1}{\left (e^4+x\right ) \log ^2(2 x \log (x))}\right ) \, dx-\int \left (-\frac {e^4}{\left (e^4+x\right )^2 \log (x) \log ^2(2 x \log (x))}+\frac {1}{\left (e^4+x\right ) \log (x) \log ^2(2 x \log (x))}\right ) \, dx\\ &=-x+e^4 \int \frac {1}{\left (e^4+x\right )^2 \log (2 x \log (x))} \, dx+\int x^x \, dx+\int x^x \log (x) \, dx-\int \frac {1}{\left (e^4+x\right ) \log ^2(2 x \log (x))} \, dx-\int \frac {1}{\left (e^4+x\right ) \log (x) \log ^2(2 x \log (x))} \, dx\\ &=-x+x^x+e^4 \int \frac {1}{\left (e^4+x\right )^2 \log (2 x \log (x))} \, dx-\int \frac {1}{\left (e^4+x\right ) \log ^2(2 x \log (x))} \, dx-\int \frac {1}{\left (e^4+x\right ) \log (x) \log ^2(2 x \log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 24, normalized size = 0.96 \begin {gather*} -x+x^x+\frac {x}{\left (e^4+x\right ) \log (2 x \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 43, normalized size = 1.72 \begin {gather*} \frac {{\left ({\left (x + e^{4}\right )} x^{x} - x^{2} - x e^{4}\right )} \log \left (2 \, x \log \relax (x)\right ) + x}{{\left (x + e^{4}\right )} \log \left (2 \, x \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 5.94, size = 1320, normalized size = 52.80 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.54, size = 103, normalized size = 4.12
method | result | size |
risch | \(x^{x}-x +\frac {2 i x}{\left (x +{\mathrm e}^{4}\right ) \left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{2}-\pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{2}+\pi \mathrm {csgn}\left (i x \ln \relax (x )\right )^{3}+2 i \ln \relax (2)+2 i \ln \relax (x )+2 i \ln \left (\ln \relax (x )\right )\right )}\) | \(103\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.97, size = 98, normalized size = 3.92 \begin {gather*} -\frac {x^{2} \log \relax (2) - {\left (x \log \relax (2) + e^{4} \log \relax (2) + {\left (x + e^{4}\right )} \log \relax (x) + {\left (x + e^{4}\right )} \log \left (\log \relax (x)\right )\right )} x^{x} + {\left (e^{4} \log \relax (2) - 1\right )} x + {\left (x^{2} + x e^{4}\right )} \log \relax (x) + {\left (x^{2} + x e^{4}\right )} \log \left (\log \relax (x)\right )}{x \log \relax (2) + e^{4} \log \relax (2) + {\left (x + e^{4}\right )} \log \relax (x) + {\left (x + e^{4}\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.48, size = 118, normalized size = 4.72 \begin {gather*} \frac {\frac {x}{x+{\mathrm {e}}^4}-\frac {x\,\ln \left (2\,x\,\ln \relax (x)\right )\,{\mathrm {e}}^4\,\ln \relax (x)}{{\left (x+{\mathrm {e}}^4\right )}^2\,\left (\ln \relax (x)+1\right )}}{\ln \left (2\,x\,\ln \relax (x)\right )}-x+x^x-\frac {\frac {2\,x^2\,{\mathrm {e}}^4}{{\left (x+{\mathrm {e}}^4\right )}^3}-\frac {x\,\ln \relax (x)\,\left ({\mathrm {e}}^8-x\,{\mathrm {e}}^4\right )}{{\left (x+{\mathrm {e}}^4\right )}^3}}{\ln \relax (x)+1}+\frac {2\,x^2\,{\mathrm {e}}^4}{x^3+3\,{\mathrm {e}}^4\,x^2+3\,{\mathrm {e}}^8\,x+{\mathrm {e}}^{12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.61, size = 22, normalized size = 0.88 \begin {gather*} - x + \frac {x}{\left (x + e^{4}\right ) \log {\left (2 x \log {\relax (x )} \right )}} + e^{x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________