Optimal. Leaf size=26 \[ 2+x \left (2+e^4-e^{\frac {3+x}{e}}-2 x+x^3\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 42, normalized size of antiderivative = 1.62, number of steps used = 5, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {12, 2176, 2194} \begin {gather*} x^4-2 x^2+e^4 x+2 x+e^{\frac {x+3}{e}+1}-e^{\frac {x+3}{e}} (x+e) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^5+e^{\frac {3+x}{e}} (-e-x)+e \left (2-4 x+4 x^3\right )\right ) \, dx}{e}\\ &=e^4 x+\frac {\int e^{\frac {3+x}{e}} (-e-x) \, dx}{e}+\int \left (2-4 x+4 x^3\right ) \, dx\\ &=2 x+e^4 x-2 x^2+x^4-e^{\frac {3+x}{e}} (e+x)+\int e^{\frac {3+x}{e}} \, dx\\ &=e^{1+\frac {3+x}{e}}+2 x+e^4 x-2 x^2+x^4-e^{\frac {3+x}{e}} (e+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 24, normalized size = 0.92 \begin {gather*} x \left (2+e^4-e^{\frac {3+x}{e}}-2 x+x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 26, normalized size = 1.00 \begin {gather*} x^{4} - 2 \, x^{2} + x e^{4} - x e^{\left ({\left (x + 3\right )} e^{\left (-1\right )}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 54, normalized size = 2.08 \begin {gather*} {\left (x e^{5} + {\left (x^{4} - 2 \, x^{2} + 2 \, x\right )} e - {\left (x e - e^{2}\right )} e^{\left ({\left (x + 3\right )} e^{\left (-1\right )}\right )} - e^{\left ({\left (x + e + 3\right )} e^{\left (-1\right )} + 1\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 1.04
method | result | size |
risch | \(x \,{\mathrm e}^{4}+x^{4}-2 x^{2}+2 x -{\mathrm e}^{\left (3+x \right ) {\mathrm e}^{-1}} x\) | \(27\) |
norman | \(x^{4}+\left (2+{\mathrm e}^{4}\right ) x -2 x^{2}-{\mathrm e}^{\left (3+x \right ) {\mathrm e}^{-1}} x\) | \(28\) |
default | \({\mathrm e}^{-1} \left ({\mathrm e} \left (-{\mathrm e}^{{\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}} {\mathrm e}-{\mathrm e} \left ({\mathrm e}^{{\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}} \left ({\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}\right )-{\mathrm e}^{{\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}}\right )+3 \,{\mathrm e}^{{\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}}\right )+{\mathrm e} \left (x^{4}-2 x^{2}+2 x \right )+{\mathrm e} \,{\mathrm e}^{4} x \right )\) | \(115\) |
derivativedivides | \(-{\mathrm e}^{{\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}} {\mathrm e}-{\mathrm e} \left ({\mathrm e}^{{\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}} \left ({\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}\right )-{\mathrm e}^{{\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}}\right )+3 \,{\mathrm e}^{{\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}}+{\mathrm e} \left (x^{4} {\mathrm e}^{-1}-4 \,{\mathrm e} \left (\frac {\left ({\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}\right )^{2}}{2}-3 \,{\mathrm e}^{-1} \left ({\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}\right )\right )+2 \,{\mathrm e}^{-1} x +6 \,{\mathrm e}^{-1}\right )+{\mathrm e} \,{\mathrm e}^{4} \left ({\mathrm e}^{-1} x +3 \,{\mathrm e}^{-1}\right )\) | \(169\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 37, normalized size = 1.42 \begin {gather*} {\left (x e^{5} + {\left (x^{4} - 2 \, x^{2} + 2 \, x\right )} e - x e^{\left (x e^{\left (-1\right )} + 3 \, e^{\left (-1\right )} + 1\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 29, normalized size = 1.12 \begin {gather*} 2\,x+x\,{\mathrm {e}}^4-2\,x^2+x^4-x\,{\mathrm {e}}^{3\,{\mathrm {e}}^{-1}}\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 24, normalized size = 0.92 \begin {gather*} x^{4} - 2 x^{2} - x e^{\frac {x + 3}{e}} + x \left (2 + e^{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________