Optimal. Leaf size=32 \[ \frac {1}{2} x \left (-4-\frac {-e^x+x}{x}+\left (-1+\frac {4 x^2}{\log (x)}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.40, antiderivative size = 29, normalized size of antiderivative = 0.91, number of steps used = 20, number of rules used = 7, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.149, Rules used = {12, 6742, 2194, 2306, 2309, 2178, 2353} \begin {gather*} \frac {8 x^5}{\log ^2(x)}-\frac {4 x^3}{\log (x)}-2 x+\frac {e^x}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2194
Rule 2306
Rule 2309
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-32 x^4+\left (8 x^2+80 x^4\right ) \log (x)-24 x^2 \log ^2(x)+\left (-4+e^x\right ) \log ^3(x)}{\log ^3(x)} \, dx\\ &=\frac {1}{2} \int \left (e^x-\frac {4 \left (8 x^4-2 x^2 \log (x)-20 x^4 \log (x)+6 x^2 \log ^2(x)+\log ^3(x)\right )}{\log ^3(x)}\right ) \, dx\\ &=\frac {\int e^x \, dx}{2}-2 \int \frac {8 x^4-2 x^2 \log (x)-20 x^4 \log (x)+6 x^2 \log ^2(x)+\log ^3(x)}{\log ^3(x)} \, dx\\ &=\frac {e^x}{2}-2 \int \left (1+\frac {8 x^4}{\log ^3(x)}+\frac {2 x^2 \left (-1-10 x^2\right )}{\log ^2(x)}+\frac {6 x^2}{\log (x)}\right ) \, dx\\ &=\frac {e^x}{2}-2 x-4 \int \frac {x^2 \left (-1-10 x^2\right )}{\log ^2(x)} \, dx-12 \int \frac {x^2}{\log (x)} \, dx-16 \int \frac {x^4}{\log ^3(x)} \, dx\\ &=\frac {e^x}{2}-2 x+\frac {8 x^5}{\log ^2(x)}-4 \int \left (-\frac {x^2}{\log ^2(x)}-\frac {10 x^4}{\log ^2(x)}\right ) \, dx-12 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )-40 \int \frac {x^4}{\log ^2(x)} \, dx\\ &=\frac {e^x}{2}-2 x-12 \text {Ei}(3 \log (x))+\frac {8 x^5}{\log ^2(x)}+\frac {40 x^5}{\log (x)}+4 \int \frac {x^2}{\log ^2(x)} \, dx+40 \int \frac {x^4}{\log ^2(x)} \, dx-200 \int \frac {x^4}{\log (x)} \, dx\\ &=\frac {e^x}{2}-2 x-12 \text {Ei}(3 \log (x))+\frac {8 x^5}{\log ^2(x)}-\frac {4 x^3}{\log (x)}+12 \int \frac {x^2}{\log (x)} \, dx+200 \int \frac {x^4}{\log (x)} \, dx-200 \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {e^x}{2}-2 x-12 \text {Ei}(3 \log (x))-200 \text {Ei}(5 \log (x))+\frac {8 x^5}{\log ^2(x)}-\frac {4 x^3}{\log (x)}+12 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+200 \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {e^x}{2}-2 x+\frac {8 x^5}{\log ^2(x)}-\frac {4 x^3}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 29, normalized size = 0.91 \begin {gather*} \frac {1}{2} \left (e^x-4 x+\frac {16 x^5}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 33, normalized size = 1.03 \begin {gather*} \frac {16 \, x^{5} - 8 \, x^{3} \log \relax (x) - {\left (4 \, x - e^{x}\right )} \log \relax (x)^{2}}{2 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 33, normalized size = 1.03 \begin {gather*} \frac {16 \, x^{5} - 8 \, x^{3} \log \relax (x) - 4 \, x \log \relax (x)^{2} + e^{x} \log \relax (x)^{2}}{2 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 27, normalized size = 0.84
method | result | size |
default | \(-2 x -\frac {4 x^{3}}{\ln \relax (x )}+\frac {8 x^{5}}{\ln \relax (x )^{2}}+\frac {{\mathrm e}^{x}}{2}\) | \(27\) |
risch | \(-2 x +\frac {{\mathrm e}^{x}}{2}+\frac {4 x^{3} \left (2 x^{2}-\ln \relax (x )\right )}{\ln \relax (x )^{2}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 39, normalized size = 1.22 \begin {gather*} -2 \, x - 12 \, {\rm Ei}\left (3 \, \log \relax (x)\right ) + \frac {1}{2} \, e^{x} + 12 \, \Gamma \left (-1, -3 \, \log \relax (x)\right ) + 200 \, \Gamma \left (-1, -5 \, \log \relax (x)\right ) + 400 \, \Gamma \left (-2, -5 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.55, size = 26, normalized size = 0.81 \begin {gather*} \frac {{\mathrm {e}}^x}{2}-2\,x-\frac {4\,x^3}{\ln \relax (x)}+\frac {8\,x^5}{{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 26, normalized size = 0.81 \begin {gather*} - 2 x + \frac {8 x^{5} - 4 x^{3} \log {\relax (x )}}{\log {\relax (x )}^{2}} + \frac {e^{x}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________