Optimal. Leaf size=32 \[ e^{\frac {x}{(5-x) \left (-2+x^2+\frac {-x+\log (5)}{4+x^2}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 10.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-4 x-x^3}{40-3 x-11 x^2+2 x^3-5 x^4+x^5+(-5+x) \log (5)}\right ) \left (-160-164 x^2+22 x^3-49 x^4+16 x^5-5 x^6+2 x^7+\left (20+15 x^2-2 x^3\right ) \log (5)\right )}{1600-240 x-871 x^2+226 x^3-291 x^4+66 x^5+108 x^6-42 x^7+29 x^8-10 x^9+x^{10}+\left (-400+110 x+104 x^2-42 x^3+54 x^4-20 x^5+2 x^6\right ) \log (5)+\left (25-10 x+x^2\right ) \log ^2(5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) \left (-49 x^4+16 x^5-5 x^6+2 x^7-2 x^3 (-11+\log (5))+20 (-8+\log (5))+x^2 (-164+15 \log (5))\right )}{(5-x)^2 \left (8+x-2 x^2-x^4-\log (5)\right )^2} \, dx\\ &=\int \left (\frac {145 \exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right )}{(-5+x)^2 (662+\log (5))}+\frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) \left (-14488-x^2 (3569-563 \log (5))-x^3 (1111-112 \log (5))+1971 \log (5)-20 \log ^2(5)-x \left (4179-415 \log (5)+4 \log ^2(5)\right )\right )}{\left (8+x-2 x^2-x^4-\log (5)\right )^2 (662+\log (5))}+\frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) \left (145 x^2+2 x (63-\log (5))+5 (247-\log (125))\right )}{\left (8+x-2 x^2-x^4-\log (5)\right ) (662+\log (5))}\right ) \, dx\\ &=\frac {\int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) \left (-14488-x^2 (3569-563 \log (5))-x^3 (1111-112 \log (5))+1971 \log (5)-20 \log ^2(5)-x \left (4179-415 \log (5)+4 \log ^2(5)\right )\right )}{\left (8+x-2 x^2-x^4-\log (5)\right )^2} \, dx}{662+\log (5)}+\frac {\int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) \left (145 x^2+2 x (63-\log (5))+5 (247-\log (125))\right )}{8+x-2 x^2-x^4-\log (5)} \, dx}{662+\log (5)}+\frac {145 \int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right )}{(-5+x)^2} \, dx}{662+\log (5)}\\ &=\frac {\int \left (\frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) x^3 (-1111+112 \log (5))}{\left (-8-x+2 x^2+x^4+\log (5)\right )^2}+\frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) x^2 (-3569+563 \log (5))}{\left (-8-x+2 x^2+x^4+\log (5)\right )^2}-\frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) x \left (4179-415 \log (5)+4 \log ^2(5)\right )}{\left (-8-x+2 x^2+x^4+\log (5)\right )^2}-\frac {14488 \exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) \left (1+\frac {\log (5) (-1971+20 \log (5))}{14488}\right )}{\left (-8-x+2 x^2+x^4+\log (5)\right )^2}\right ) \, dx}{662+\log (5)}+\frac {\int \left (-\frac {145 \exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) x^2}{-8-x+2 x^2+x^4+\log (5)}+\frac {2 \exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) x (-63+\log (5))}{-8-x+2 x^2+x^4+\log (5)}+\frac {5 \exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) (-247+\log (125))}{-8-x+2 x^2+x^4+\log (5)}\right ) \, dx}{662+\log (5)}+\frac {145 \int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right )}{(-5+x)^2} \, dx}{662+\log (5)}\\ &=\frac {145 \int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right )}{(-5+x)^2} \, dx}{662+\log (5)}-\frac {145 \int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) x^2}{-8-x+2 x^2+x^4+\log (5)} \, dx}{662+\log (5)}-\frac {(3569-563 \log (5)) \int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) x^2}{\left (-8-x+2 x^2+x^4+\log (5)\right )^2} \, dx}{662+\log (5)}-\frac {(1111-112 \log (5)) \int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) x^3}{\left (-8-x+2 x^2+x^4+\log (5)\right )^2} \, dx}{662+\log (5)}-\frac {((1811-20 \log (5)) (8-\log (5))) \int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right )}{\left (-8-x+2 x^2+x^4+\log (5)\right )^2} \, dx}{662+\log (5)}-\frac {(2 (63-\log (5))) \int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) x}{-8-x+2 x^2+x^4+\log (5)} \, dx}{662+\log (5)}-\frac {\left (4179-415 \log (5)+4 \log ^2(5)\right ) \int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right ) x}{\left (-8-x+2 x^2+x^4+\log (5)\right )^2} \, dx}{662+\log (5)}-\frac {(5 (247-\log (125))) \int \frac {\exp \left (-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}\right )}{-8-x+2 x^2+x^4+\log (5)} \, dx}{662+\log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 32, normalized size = 1.00 \begin {gather*} e^{-\frac {x \left (4+x^2\right )}{(-5+x) \left (-8-x+2 x^2+x^4+\log (5)\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 41, normalized size = 1.28 \begin {gather*} e^{\left (-\frac {x^{3} + 4 \, x}{x^{5} - 5 \, x^{4} + 2 \, x^{3} - 11 \, x^{2} + {\left (x - 5\right )} \log \relax (5) - 3 \, x + 40}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 76, normalized size = 2.38 \begin {gather*} e^{\left (-\frac {x^{3}}{x^{5} - 5 \, x^{4} + 2 \, x^{3} - 11 \, x^{2} + x \log \relax (5) - 3 \, x - 5 \, \log \relax (5) + 40} - \frac {4 \, x}{x^{5} - 5 \, x^{4} + 2 \, x^{3} - 11 \, x^{2} + x \log \relax (5) - 3 \, x - 5 \, \log \relax (5) + 40}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.45, size = 32, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{-\frac {x \left (x^{2}+4\right )}{\left (x -5\right ) \left (x^{4}+2 x^{2}+\ln \relax (5)-x -8\right )}}\) | \(32\) |
gosper | \({\mathrm e}^{-\frac {x \left (x^{2}+4\right )}{x^{5}-5 x^{4}+2 x^{3}+x \ln \relax (5)-11 x^{2}-5 \ln \relax (5)-3 x +40}}\) | \(43\) |
norman | \(\frac {x^{5} {\mathrm e}^{\frac {-x^{3}-4 x}{\left (x -5\right ) \ln \relax (5)+x^{5}-5 x^{4}+2 x^{3}-11 x^{2}-3 x +40}}+\left (-5 \ln \relax (5)+40\right ) {\mathrm e}^{\frac {-x^{3}-4 x}{\left (x -5\right ) \ln \relax (5)+x^{5}-5 x^{4}+2 x^{3}-11 x^{2}-3 x +40}}+\left (\ln \relax (5)-3\right ) x \,{\mathrm e}^{\frac {-x^{3}-4 x}{\left (x -5\right ) \ln \relax (5)+x^{5}-5 x^{4}+2 x^{3}-11 x^{2}-3 x +40}}-11 x^{2} {\mathrm e}^{\frac {-x^{3}-4 x}{\left (x -5\right ) \ln \relax (5)+x^{5}-5 x^{4}+2 x^{3}-11 x^{2}-3 x +40}}+2 x^{3} {\mathrm e}^{\frac {-x^{3}-4 x}{\left (x -5\right ) \ln \relax (5)+x^{5}-5 x^{4}+2 x^{3}-11 x^{2}-3 x +40}}-5 x^{4} {\mathrm e}^{\frac {-x^{3}-4 x}{\left (x -5\right ) \ln \relax (5)+x^{5}-5 x^{4}+2 x^{3}-11 x^{2}-3 x +40}}}{\left (x -5\right ) \left (x^{4}+2 x^{2}+\ln \relax (5)-x -8\right )}\) | \(309\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 4.17, size = 301, normalized size = 9.41 \begin {gather*} e^{\left (\frac {145 \, x^{3}}{x^{4} {\left (\log \relax (5) + 662\right )} + 2 \, x^{2} {\left (\log \relax (5) + 662\right )} - x {\left (\log \relax (5) + 662\right )} + \log \relax (5)^{2} + 654 \, \log \relax (5) - 5296} - \frac {x^{2} \log \relax (5)}{x^{4} {\left (\log \relax (5) + 662\right )} + 2 \, x^{2} {\left (\log \relax (5) + 662\right )} - x {\left (\log \relax (5) + 662\right )} + \log \relax (5)^{2} + 654 \, \log \relax (5) - 5296} + \frac {63 \, x^{2}}{x^{4} {\left (\log \relax (5) + 662\right )} + 2 \, x^{2} {\left (\log \relax (5) + 662\right )} - x {\left (\log \relax (5) + 662\right )} + \log \relax (5)^{2} + 654 \, \log \relax (5) - 5296} - \frac {5 \, x \log \relax (5)}{x^{4} {\left (\log \relax (5) + 662\right )} + 2 \, x^{2} {\left (\log \relax (5) + 662\right )} - x {\left (\log \relax (5) + 662\right )} + \log \relax (5)^{2} + 654 \, \log \relax (5) - 5296} + \frac {605 \, x}{x^{4} {\left (\log \relax (5) + 662\right )} + 2 \, x^{2} {\left (\log \relax (5) + 662\right )} - x {\left (\log \relax (5) + 662\right )} + \log \relax (5)^{2} + 654 \, \log \relax (5) - 5296} - \frac {29 \, \log \relax (5)}{x^{4} {\left (\log \relax (5) + 662\right )} + 2 \, x^{2} {\left (\log \relax (5) + 662\right )} - x {\left (\log \relax (5) + 662\right )} + \log \relax (5)^{2} + 654 \, \log \relax (5) - 5296} + \frac {232}{x^{4} {\left (\log \relax (5) + 662\right )} + 2 \, x^{2} {\left (\log \relax (5) + 662\right )} - x {\left (\log \relax (5) + 662\right )} + \log \relax (5)^{2} + 654 \, \log \relax (5) - 5296} - \frac {145}{x {\left (\log \relax (5) + 662\right )} - 5 \, \log \relax (5) - 3310}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 178.82, size = 45, normalized size = 1.41 \begin {gather*} {\mathrm {e}}^{\frac {x^3+4\,x}{3\,x+5\,\ln \relax (5)-x\,\ln \relax (5)+11\,x^2-2\,x^3+5\,x^4-x^5-40}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.26, size = 39, normalized size = 1.22 \begin {gather*} e^{\frac {- x^{3} - 4 x}{x^{5} - 5 x^{4} + 2 x^{3} - 11 x^{2} - 3 x + \left (x - 5\right ) \log {\relax (5 )} + 40}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________