Optimal. Leaf size=31 \[ \frac {\left (3+\frac {x}{\log (2)}\right ) \log (\log (x))}{\sqrt [5]{e}-\left (\frac {1}{4}+2 x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x+256 \sqrt [5]{e} x-256 x^2-1024 x^3+\left (-48+768 \sqrt [5]{e}-768 x-3072 x^2\right ) \log (2)+\left (-16 x+256 \sqrt [5]{e} x+1024 x^3+\left (768 x+6144 x^2\right ) \log (2)\right ) \log (x) \log (\log (x))}{\left (x+256 e^{2/5} x+32 x^2+384 x^3+2048 x^4+4096 x^5+\sqrt [5]{e} \left (-32 x-512 x^2-2048 x^3\right )\right ) \log (2) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16 x+256 \sqrt [5]{e} x-256 x^2-1024 x^3+\left (-48+768 \sqrt [5]{e}-768 x-3072 x^2\right ) \log (2)+\left (-16 x+256 \sqrt [5]{e} x+1024 x^3+\left (768 x+6144 x^2\right ) \log (2)\right ) \log (x) \log (\log (x))}{\left (\left (1+256 e^{2/5}\right ) x+32 x^2+384 x^3+2048 x^4+4096 x^5+\sqrt [5]{e} \left (-32 x-512 x^2-2048 x^3\right )\right ) \log (2) \log (x)} \, dx\\ &=\int \frac {\left (-16+256 \sqrt [5]{e}\right ) x-256 x^2-1024 x^3+\left (-48+768 \sqrt [5]{e}-768 x-3072 x^2\right ) \log (2)+\left (-16 x+256 \sqrt [5]{e} x+1024 x^3+\left (768 x+6144 x^2\right ) \log (2)\right ) \log (x) \log (\log (x))}{\left (\left (1+256 e^{2/5}\right ) x+32 x^2+384 x^3+2048 x^4+4096 x^5+\sqrt [5]{e} \left (-32 x-512 x^2-2048 x^3\right )\right ) \log (2) \log (x)} \, dx\\ &=\frac {\int \frac {\left (-16+256 \sqrt [5]{e}\right ) x-256 x^2-1024 x^3+\left (-48+768 \sqrt [5]{e}-768 x-3072 x^2\right ) \log (2)+\left (-16 x+256 \sqrt [5]{e} x+1024 x^3+\left (768 x+6144 x^2\right ) \log (2)\right ) \log (x) \log (\log (x))}{\left (\left (1+256 e^{2/5}\right ) x+32 x^2+384 x^3+2048 x^4+4096 x^5+\sqrt [5]{e} \left (-32 x-512 x^2-2048 x^3\right )\right ) \log (x)} \, dx}{\log (2)}\\ &=\frac {\int \frac {16 \left (\left (16 \sqrt [5]{e}-(1+8 x)^2\right ) (x+\log (8))+x \left (16 \sqrt [5]{e}+(1+8 x) (-1+8 x+48 \log (2))\right ) \log (x) \log (\log (x))\right )}{x \left (1-16 \sqrt [5]{e}+16 x+64 x^2\right )^2 \log (x)} \, dx}{\log (2)}\\ &=\frac {16 \int \frac {\left (16 \sqrt [5]{e}-(1+8 x)^2\right ) (x+\log (8))+x \left (16 \sqrt [5]{e}+(1+8 x) (-1+8 x+48 \log (2))\right ) \log (x) \log (\log (x))}{x \left (1-16 \sqrt [5]{e}+16 x+64 x^2\right )^2 \log (x)} \, dx}{\log (2)}\\ &=\frac {16 \int \left (\frac {-x-\log (8)}{x \left (1-16 \sqrt [5]{e}+16 x+64 x^2\right ) \log (x)}+\frac {\left (-1+16 \sqrt [5]{e}+64 x^2+48 \log (2)+384 x \log (2)\right ) \log (\log (x))}{\left (-1+16 \sqrt [5]{e}-16 x-64 x^2\right )^2}\right ) \, dx}{\log (2)}\\ &=\frac {16 \int \frac {-x-\log (8)}{x \left (1-16 \sqrt [5]{e}+16 x+64 x^2\right ) \log (x)} \, dx}{\log (2)}+\frac {16 \int \frac {\left (-1+16 \sqrt [5]{e}+64 x^2+48 \log (2)+384 x \log (2)\right ) \log (\log (x))}{\left (-1+16 \sqrt [5]{e}-16 x-64 x^2\right )^2} \, dx}{\log (2)}\\ &=\frac {16 \int \frac {-x-\log (8)}{x \left (1-16 \sqrt [5]{e}+16 x+64 x^2\right ) \log (x)} \, dx}{\log (2)}+\frac {16 \int \left (-\frac {\log (\log (x))}{-1+16 \sqrt [5]{e}-16 x-64 x^2}+\frac {2 \left (-1+16 \sqrt [5]{e}-8 x (1-24 \log (2))+24 \log (2)\right ) \log (\log (x))}{\left (1-16 \sqrt [5]{e}+16 x+64 x^2\right )^2}\right ) \, dx}{\log (2)}\\ &=\frac {16 \int \frac {-x-\log (8)}{x \left (1-16 \sqrt [5]{e}+16 x+64 x^2\right ) \log (x)} \, dx}{\log (2)}-\frac {16 \int \frac {\log (\log (x))}{-1+16 \sqrt [5]{e}-16 x-64 x^2} \, dx}{\log (2)}+\frac {32 \int \frac {\left (-1+16 \sqrt [5]{e}-8 x (1-24 \log (2))+24 \log (2)\right ) \log (\log (x))}{\left (1-16 \sqrt [5]{e}+16 x+64 x^2\right )^2} \, dx}{\log (2)}\\ &=\frac {16 \int \frac {-x-\log (8)}{x \left (1-16 \sqrt [5]{e}+16 x+64 x^2\right ) \log (x)} \, dx}{\log (2)}-\frac {16 \int \left (\frac {2 \log (\log (x))}{\sqrt [10]{e} \left (-16+64 \sqrt [10]{e}-128 x\right )}+\frac {2 \log (\log (x))}{\sqrt [10]{e} \left (16+64 \sqrt [10]{e}+128 x\right )}\right ) \, dx}{\log (2)}+\frac {32 \int \left (\frac {8 x (-1+24 \log (2)) \log (\log (x))}{\left (-1+16 \sqrt [5]{e}-16 x-64 x^2\right )^2}-\frac {\left (1-8 \left (2 \sqrt [5]{e}+\log (8)\right )\right ) \log (\log (x))}{\left (-1+16 \sqrt [5]{e}-16 x-64 x^2\right )^2}\right ) \, dx}{\log (2)}\\ &=\frac {16 \int \frac {-x-\log (8)}{x \left (1-16 \sqrt [5]{e}+16 x+64 x^2\right ) \log (x)} \, dx}{\log (2)}-\frac {32 \int \frac {\log (\log (x))}{-16+64 \sqrt [10]{e}-128 x} \, dx}{\sqrt [10]{e} \log (2)}-\frac {32 \int \frac {\log (\log (x))}{16+64 \sqrt [10]{e}+128 x} \, dx}{\sqrt [10]{e} \log (2)}-\frac {(256 (1-24 \log (2))) \int \frac {x \log (\log (x))}{\left (-1+16 \sqrt [5]{e}-16 x-64 x^2\right )^2} \, dx}{\log (2)}-\frac {\left (32 \left (1-16 \sqrt [5]{e}-8 \log (8)\right )\right ) \int \frac {\log (\log (x))}{\left (-1+16 \sqrt [5]{e}-16 x-64 x^2\right )^2} \, dx}{\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.80, size = 34, normalized size = 1.10 \begin {gather*} \frac {16 (x+3 \log (2)) \log (\log (x))}{\left (-1+16 \sqrt [5]{e}-16 x-64 x^2\right ) \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 31, normalized size = 1.00 \begin {gather*} -\frac {16 \, {\left (x + 3 \, \log \relax (2)\right )} \log \left (\log \relax (x)\right )}{{\left (64 \, x^{2} + 16 \, x - 16 \, e^{\frac {1}{5}} + 1\right )} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 35, normalized size = 1.13 \begin {gather*} -\frac {16 \, {\left (x \log \left (\log \relax (x)\right ) + 3 \, \log \relax (2) \log \left (\log \relax (x)\right )\right )}}{{\left (64 \, x^{2} + 16 \, x - 16 \, e^{\frac {1}{5}} + 1\right )} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 32, normalized size = 1.03
method | result | size |
risch | \(\frac {16 \left (3 \ln \relax (2)+x \right ) \ln \left (\ln \relax (x )\right )}{\ln \relax (2) \left (-64 x^{2}+16 \,{\mathrm e}^{\frac {1}{5}}-16 x -1\right )}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.54, size = 29, normalized size = 0.94 \begin {gather*} -\frac {16\,\ln \left (\ln \relax (x)\right )\,\left (x+\ln \relax (8)\right )}{\ln \relax (2)\,\left (64\,x^2+16\,x-16\,{\mathrm {e}}^{1/5}+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 42, normalized size = 1.35 \begin {gather*} \frac {\left (- 16 x - 48 \log {\relax (2 )}\right ) \log {\left (\log {\relax (x )} \right )}}{64 x^{2} \log {\relax (2 )} + 16 x \log {\relax (2 )} - 16 e^{\frac {1}{5}} \log {\relax (2 )} + \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________