Optimal. Leaf size=22 \[ \left (-\frac {4 x}{3}+\left (1+e^x\right )^2 \log (3)+x \log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.20, antiderivative size = 165, normalized size of antiderivative = 7.50, number of steps used = 18, number of rules used = 9, integrand size = 116, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {12, 2194, 2187, 2176, 2554, 2282, 43, 2305, 2304} \begin {gather*} \frac {16 x^2}{9}+x^2 \log ^2(x)-\frac {8}{3} x^2 \log (x)+4 e^{3 x} \log ^2(3)+e^{4 x} \log ^2(3)+2 x \log (3) \log (x)-\frac {8}{3} x \log (3)-\frac {4}{3} e^x \log (3) (4 x+1-\log (27))-4 e^x \log (3) \log (x)-e^{2 x} \log (3) \log (x)+4 e^x (x+1) \log (3) \log (x)+e^{2 x} (2 x+1) \log (3) \log (x)+\frac {4}{3} e^x \log (3)+\frac {1}{3} e^{2 x} \log (3)-\frac {1}{3} e^{2 x} \log (3) (8 x+1-18 \log (3)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 2176
Rule 2187
Rule 2194
Rule 2282
Rule 2304
Rule 2305
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \left (8 x-6 \log (3)+108 e^{3 x} \log ^2(3)+36 e^{4 x} \log ^2(3)+e^x \left ((-12-48 x) \log (3)+36 \log ^2(3)\right )+e^{2 x} \left ((-6-48 x) \log (3)+108 \log ^2(3)\right )+\left (-30 x+18 \log (3)+e^{2 x} (18+36 x) \log (3)+e^x (36+36 x) \log (3)\right ) \log (x)+18 x \log ^2(x)\right ) \, dx\\ &=\frac {4 x^2}{9}-\frac {2}{3} x \log (3)+\frac {1}{9} \int e^x \left ((-12-48 x) \log (3)+36 \log ^2(3)\right ) \, dx+\frac {1}{9} \int e^{2 x} \left ((-6-48 x) \log (3)+108 \log ^2(3)\right ) \, dx+\frac {1}{9} \int \left (-30 x+18 \log (3)+e^{2 x} (18+36 x) \log (3)+e^x (36+36 x) \log (3)\right ) \log (x) \, dx+2 \int x \log ^2(x) \, dx+\left (4 \log ^2(3)\right ) \int e^{4 x} \, dx+\left (12 \log ^2(3)\right ) \int e^{3 x} \, dx\\ &=\frac {4 x^2}{9}-\frac {2}{3} x \log (3)+4 e^{3 x} \log ^2(3)+e^{4 x} \log ^2(3)-\frac {5}{3} x^2 \log (x)-4 e^x \log (3) \log (x)-e^{2 x} \log (3) \log (x)+2 x \log (3) \log (x)+4 e^x (1+x) \log (3) \log (x)+e^{2 x} (1+2 x) \log (3) \log (x)+x^2 \log ^2(x)-\frac {1}{9} \int 3 \left (-5 x+6 \left (1+e^x\right )^2 \log (3)\right ) \, dx+\frac {1}{9} \int e^{2 x} (-48 x \log (3)-6 (1-18 \log (3)) \log (3)) \, dx+\frac {1}{9} \int e^x (-48 x \log (3)-12 \log (3) (1-\log (27))) \, dx-2 \int x \log (x) \, dx\\ &=\frac {17 x^2}{18}-\frac {2}{3} x \log (3)-\frac {1}{3} e^{2 x} (1+8 x-18 \log (3)) \log (3)+4 e^{3 x} \log ^2(3)+e^{4 x} \log ^2(3)-\frac {4}{3} e^x \log (3) (1+4 x-\log (27))-\frac {8}{3} x^2 \log (x)-4 e^x \log (3) \log (x)-e^{2 x} \log (3) \log (x)+2 x \log (3) \log (x)+4 e^x (1+x) \log (3) \log (x)+e^{2 x} (1+2 x) \log (3) \log (x)+x^2 \log ^2(x)-\frac {1}{3} \int \left (-5 x+6 \left (1+e^x\right )^2 \log (3)\right ) \, dx+\frac {1}{3} (8 \log (3)) \int e^{2 x} \, dx+\frac {1}{3} (16 \log (3)) \int e^x \, dx\\ &=\frac {16 x^2}{9}+\frac {16}{3} e^x \log (3)+\frac {4}{3} e^{2 x} \log (3)-\frac {2}{3} x \log (3)-\frac {1}{3} e^{2 x} (1+8 x-18 \log (3)) \log (3)+4 e^{3 x} \log ^2(3)+e^{4 x} \log ^2(3)-\frac {4}{3} e^x \log (3) (1+4 x-\log (27))-\frac {8}{3} x^2 \log (x)-4 e^x \log (3) \log (x)-e^{2 x} \log (3) \log (x)+2 x \log (3) \log (x)+4 e^x (1+x) \log (3) \log (x)+e^{2 x} (1+2 x) \log (3) \log (x)+x^2 \log ^2(x)-(2 \log (3)) \int \left (1+e^x\right )^2 \, dx\\ &=\frac {16 x^2}{9}+\frac {16}{3} e^x \log (3)+\frac {4}{3} e^{2 x} \log (3)-\frac {2}{3} x \log (3)-\frac {1}{3} e^{2 x} (1+8 x-18 \log (3)) \log (3)+4 e^{3 x} \log ^2(3)+e^{4 x} \log ^2(3)-\frac {4}{3} e^x \log (3) (1+4 x-\log (27))-\frac {8}{3} x^2 \log (x)-4 e^x \log (3) \log (x)-e^{2 x} \log (3) \log (x)+2 x \log (3) \log (x)+4 e^x (1+x) \log (3) \log (x)+e^{2 x} (1+2 x) \log (3) \log (x)+x^2 \log ^2(x)-(2 \log (3)) \operatorname {Subst}\left (\int \frac {(1+x)^2}{x} \, dx,x,e^x\right )\\ &=\frac {16 x^2}{9}+\frac {16}{3} e^x \log (3)+\frac {4}{3} e^{2 x} \log (3)-\frac {2}{3} x \log (3)-\frac {1}{3} e^{2 x} (1+8 x-18 \log (3)) \log (3)+4 e^{3 x} \log ^2(3)+e^{4 x} \log ^2(3)-\frac {4}{3} e^x \log (3) (1+4 x-\log (27))-\frac {8}{3} x^2 \log (x)-4 e^x \log (3) \log (x)-e^{2 x} \log (3) \log (x)+2 x \log (3) \log (x)+4 e^x (1+x) \log (3) \log (x)+e^{2 x} (1+2 x) \log (3) \log (x)+x^2 \log ^2(x)-(2 \log (3)) \operatorname {Subst}\left (\int \left (2+\frac {1}{x}+x\right ) \, dx,x,e^x\right )\\ &=\frac {16 x^2}{9}+\frac {4}{3} e^x \log (3)+\frac {1}{3} e^{2 x} \log (3)-\frac {8}{3} x \log (3)-\frac {1}{3} e^{2 x} (1+8 x-18 \log (3)) \log (3)+4 e^{3 x} \log ^2(3)+e^{4 x} \log ^2(3)-\frac {4}{3} e^x \log (3) (1+4 x-\log (27))-\frac {8}{3} x^2 \log (x)-4 e^x \log (3) \log (x)-e^{2 x} \log (3) \log (x)+2 x \log (3) \log (x)+4 e^x (1+x) \log (3) \log (x)+e^{2 x} (1+2 x) \log (3) \log (x)+x^2 \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 32, normalized size = 1.45 \begin {gather*} \frac {1}{9} \left (-4 x+6 e^x \log (3)+\log (27)+e^{2 x} \log (27)+3 x \log (x)\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 103, normalized size = 4.68 \begin {gather*} x^{2} \log \relax (x)^{2} + e^{\left (4 \, x\right )} \log \relax (3)^{2} + 4 \, e^{\left (3 \, x\right )} \log \relax (3)^{2} + \frac {16}{9} \, x^{2} - \frac {2}{3} \, {\left (4 \, x \log \relax (3) - 9 \, \log \relax (3)^{2}\right )} e^{\left (2 \, x\right )} - \frac {4}{3} \, {\left (4 \, x \log \relax (3) - 3 \, \log \relax (3)^{2}\right )} e^{x} - \frac {8}{3} \, x \log \relax (3) + \frac {2}{3} \, {\left (3 \, x e^{\left (2 \, x\right )} \log \relax (3) + 6 \, x e^{x} \log \relax (3) - 4 \, x^{2} + 3 \, x \log \relax (3)\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 128, normalized size = 5.82 \begin {gather*} 2 \, x e^{\left (2 \, x\right )} \log \relax (3) \log \relax (x) + 4 \, x e^{x} \log \relax (3) \log \relax (x) + x^{2} \log \relax (x)^{2} + e^{\left (4 \, x\right )} \log \relax (3)^{2} + 4 \, e^{\left (3 \, x\right )} \log \relax (3)^{2} - \frac {8}{3} \, x^{2} \log \relax (x) + 2 \, x \log \relax (3) \log \relax (x) + \frac {16}{9} \, x^{2} - \frac {1}{3} \, {\left (8 \, x \log \relax (3) - 18 \, \log \relax (3)^{2} - 3 \, \log \relax (3)\right )} e^{\left (2 \, x\right )} - \frac {4}{3} \, {\left (4 \, x \log \relax (3) - 3 \, \log \relax (3)^{2} - 3 \, \log \relax (3)\right )} e^{x} - \frac {8}{3} \, x \log \relax (3) - e^{\left (2 \, x\right )} \log \relax (3) - 4 \, e^{x} \log \relax (3) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 107, normalized size = 4.86
method | result | size |
default | \(\frac {16 x^{2}}{9}+x^{2} \ln \relax (x )^{2}-\frac {8 x^{2} \ln \relax (x )}{3}+4 \ln \relax (3)^{2} {\mathrm e}^{x}-\frac {16 x \ln \relax (3) {\mathrm e}^{x}}{3}+6 \ln \relax (3)^{2} {\mathrm e}^{2 x}-\frac {8 \ln \relax (3) {\mathrm e}^{2 x} x}{3}+2 x \ln \relax (3) \ln \relax (x )-\frac {8 x \ln \relax (3)}{3}+4 x \ln \relax (3) {\mathrm e}^{x} \ln \relax (x )+2 \ln \relax (x ) {\mathrm e}^{2 x} \ln \relax (3) x +4 \ln \relax (3)^{2} {\mathrm e}^{3 x}+\ln \relax (3)^{2} {\mathrm e}^{4 x}\) | \(107\) |
risch | \(\frac {16 x^{2}}{9}+x^{2} \ln \relax (x )^{2}-\frac {8 x^{2} \ln \relax (x )}{3}+4 \ln \relax (3)^{2} {\mathrm e}^{x}-\frac {16 x \ln \relax (3) {\mathrm e}^{x}}{3}+6 \ln \relax (3)^{2} {\mathrm e}^{2 x}-\frac {8 \ln \relax (3) {\mathrm e}^{2 x} x}{3}+2 x \ln \relax (3) \ln \relax (x )-\frac {8 x \ln \relax (3)}{3}+4 x \ln \relax (3) {\mathrm e}^{x} \ln \relax (x )+2 \ln \relax (x ) {\mathrm e}^{2 x} \ln \relax (3) x +4 \ln \relax (3)^{2} {\mathrm e}^{3 x}+\ln \relax (3)^{2} {\mathrm e}^{4 x}\) | \(107\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.63, size = 134, normalized size = 6.09 \begin {gather*} \frac {1}{2} \, {\left (2 \, \log \relax (x)^{2} - 2 \, \log \relax (x) + 1\right )} x^{2} + e^{\left (4 \, x\right )} \log \relax (3)^{2} + 4 \, e^{\left (3 \, x\right )} \log \relax (3)^{2} + \frac {23}{18} \, x^{2} - \frac {1}{3} \, {\left (8 \, x \log \relax (3) - 18 \, \log \relax (3)^{2} - 3 \, \log \relax (3)\right )} e^{\left (2 \, x\right )} - \frac {4}{3} \, {\left (4 \, x \log \relax (3) - 3 \, \log \relax (3)^{2} - 3 \, \log \relax (3)\right )} e^{x} - \frac {8}{3} \, x \log \relax (3) - e^{\left (2 \, x\right )} \log \relax (3) - 4 \, e^{x} \log \relax (3) + \frac {1}{3} \, {\left (6 \, x e^{\left (2 \, x\right )} \log \relax (3) + 12 \, x e^{x} \log \relax (3) - 5 \, x^{2} + 6 \, x \log \relax (3)\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.85, size = 106, normalized size = 4.82 \begin {gather*} 4\,{\mathrm {e}}^x\,{\ln \relax (3)}^2-\frac {8\,x^2\,\ln \relax (x)}{3}-\frac {8\,x\,\ln \relax (3)}{3}+6\,{\mathrm {e}}^{2\,x}\,{\ln \relax (3)}^2+4\,{\mathrm {e}}^{3\,x}\,{\ln \relax (3)}^2+{\mathrm {e}}^{4\,x}\,{\ln \relax (3)}^2+x^2\,{\ln \relax (x)}^2+\frac {16\,x^2}{9}-\frac {16\,x\,{\mathrm {e}}^x\,\ln \relax (3)}{3}+2\,x\,\ln \relax (3)\,\ln \relax (x)-\frac {8\,x\,{\mathrm {e}}^{2\,x}\,\ln \relax (3)}{3}+4\,x\,{\mathrm {e}}^x\,\ln \relax (3)\,\ln \relax (x)+2\,x\,{\mathrm {e}}^{2\,x}\,\ln \relax (3)\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.56, size = 121, normalized size = 5.50 \begin {gather*} x^{2} \log {\relax (x )}^{2} + \frac {16 x^{2}}{9} - \frac {8 x \log {\relax (3 )}}{3} + \left (- \frac {8 x^{2}}{3} + 2 x \log {\relax (3 )}\right ) \log {\relax (x )} + \frac {\left (18 x \log {\relax (3 )} \log {\relax (x )} - 24 x \log {\relax (3 )} + 54 \log {\relax (3 )}^{2}\right ) e^{2 x}}{9} + \frac {\left (36 x \log {\relax (3 )} \log {\relax (x )} - 48 x \log {\relax (3 )} + 36 \log {\relax (3 )}^{2}\right ) e^{x}}{9} + e^{4 x} \log {\relax (3 )}^{2} + 4 e^{3 x} \log {\relax (3 )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________