Optimal. Leaf size=34 \[ -x+\frac {1+\frac {3}{2+\frac {x}{1+2 x}}}{5 \log \left (x^2+\log (2)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20 x-94 x^2-110 x^3+\left (-3 x^2-3 \log (2)\right ) \log \left (x^2+\log (2)\right )+\left (-20 x^2-100 x^3-125 x^4+\left (-20-100 x-125 x^2\right ) \log (2)\right ) \log ^2\left (x^2+\log (2)\right )}{\left (20 x^2+100 x^3+125 x^4+\left (20+100 x+125 x^2\right ) \log (2)\right ) \log ^2\left (x^2+\log (2)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1-\frac {2 x (5+11 x)}{5 (2+5 x) \left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )}-\frac {3}{5 (2+5 x)^2 \log \left (x^2+\log (2)\right )}\right ) \, dx\\ &=-x-\frac {2}{5} \int \frac {x (5+11 x)}{(2+5 x) \left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )} \, dx-\frac {3}{5} \int \frac {1}{(2+5 x)^2 \log \left (x^2+\log (2)\right )} \, dx\\ &=-x-\frac {2}{5} \int \left (-\frac {6}{(2+5 x) (4+25 \log (2)) \log ^2\left (x^2+\log (2)\right )}+\frac {\log (8)+5 x (2+\log (2048))}{\left (x^2+\log (2)\right ) (4+25 \log (2)) \log ^2\left (x^2+\log (2)\right )}\right ) \, dx-\frac {3}{5} \int \frac {1}{(2+5 x)^2 \log \left (x^2+\log (2)\right )} \, dx\\ &=-x-\frac {3}{5} \int \frac {1}{(2+5 x)^2 \log \left (x^2+\log (2)\right )} \, dx-\frac {2 \int \frac {\log (8)+5 x (2+\log (2048))}{\left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}+\frac {12 \int \frac {1}{(2+5 x) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}\\ &=-x-\frac {3}{5} \int \frac {1}{(2+5 x)^2 \log \left (x^2+\log (2)\right )} \, dx-\frac {2 \int \left (\frac {\log (8)}{\left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )}+\frac {5 x (2+\log (2048))}{\left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )}\right ) \, dx}{5 (4+25 \log (2))}+\frac {12 \int \frac {1}{(2+5 x) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}\\ &=-x-\frac {3}{5} \int \frac {1}{(2+5 x)^2 \log \left (x^2+\log (2)\right )} \, dx+\frac {12 \int \frac {1}{(2+5 x) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}-\frac {(2 \log (8)) \int \frac {1}{\left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}-\frac {(2 (2+\log (2048))) \int \frac {x}{\left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )} \, dx}{4+25 \log (2)}\\ &=-x-\frac {3}{5} \int \frac {1}{(2+5 x)^2 \log \left (x^2+\log (2)\right )} \, dx+\frac {12 \int \frac {1}{(2+5 x) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}-\frac {(2 \log (8)) \int \frac {1}{\left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}-\frac {(2+\log (2048)) \operatorname {Subst}\left (\int \frac {1}{(x+\log (2)) \log ^2(x+\log (2))} \, dx,x,x^2\right )}{4+25 \log (2)}\\ &=-x-\frac {3}{5} \int \frac {1}{(2+5 x)^2 \log \left (x^2+\log (2)\right )} \, dx+\frac {12 \int \frac {1}{(2+5 x) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}-\frac {(2 \log (8)) \int \frac {1}{\left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}-\frac {(2+\log (2048)) \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,x^2+\log (2)\right )}{4+25 \log (2)}\\ &=-x-\frac {3}{5} \int \frac {1}{(2+5 x)^2 \log \left (x^2+\log (2)\right )} \, dx+\frac {12 \int \frac {1}{(2+5 x) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}-\frac {(2 \log (8)) \int \frac {1}{\left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}-\frac {(2+\log (2048)) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (x^2+\log (2)\right )\right )}{4+25 \log (2)}\\ &=-x+\frac {2+\log (2048)}{(4+25 \log (2)) \log \left (x^2+\log (2)\right )}-\frac {3}{5} \int \frac {1}{(2+5 x)^2 \log \left (x^2+\log (2)\right )} \, dx+\frac {12 \int \frac {1}{(2+5 x) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}-\frac {(2 \log (8)) \int \frac {1}{\left (x^2+\log (2)\right ) \log ^2\left (x^2+\log (2)\right )} \, dx}{5 (4+25 \log (2))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 29, normalized size = 0.85 \begin {gather*} -x-\frac {-5-11 x}{5 (2+5 x) \log \left (x^2+\log (2)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 41, normalized size = 1.21 \begin {gather*} -\frac {5 \, {\left (5 \, x^{2} + 2 \, x\right )} \log \left (x^{2} + \log \relax (2)\right ) - 11 \, x - 5}{5 \, {\left (5 \, x + 2\right )} \log \left (x^{2} + \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 33, normalized size = 0.97 \begin {gather*} -x + \frac {11 \, x + 5}{5 \, {\left (5 \, x \log \left (x^{2} + \log \relax (2)\right ) + 2 \, \log \left (x^{2} + \log \relax (2)\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 28, normalized size = 0.82
method | result | size |
risch | \(-x +\frac {11 x +5}{5 \left (5 x +2\right ) \ln \left (\ln \relax (2)+x^{2}\right )}\) | \(28\) |
norman | \(\frac {1+\frac {4 \ln \left (\ln \relax (2)+x^{2}\right )}{5}+\frac {11 x}{5}-5 \ln \left (\ln \relax (2)+x^{2}\right ) x^{2}}{\left (5 x +2\right ) \ln \left (\ln \relax (2)+x^{2}\right )}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.75, size = 41, normalized size = 1.21 \begin {gather*} -\frac {5 \, {\left (5 \, x^{2} + 2 \, x\right )} \log \left (x^{2} + \log \relax (2)\right ) - 11 \, x - 5}{5 \, {\left (5 \, x + 2\right )} \log \left (x^{2} + \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.64, size = 88, normalized size = 2.59 \begin {gather*} \frac {\frac {11\,x+5}{5\,\left (5\,x+2\right )}+\frac {\ln \left (x^2+\ln \relax (2)\right )\,\left (3\,x^2+\ln \relax (8)\right )}{10\,x\,\left (25\,x^2+20\,x+4\right )}}{\ln \left (x^2+\ln \relax (2)\right )}-x-\frac {3\,x^2+3\,\ln \relax (2)}{250\,x^3+200\,x^2+40\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 19, normalized size = 0.56 \begin {gather*} - x + \frac {11 x + 5}{\left (25 x + 10\right ) \log {\left (x^{2} + \log {\relax (2 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________