Optimal. Leaf size=22 \[ \left (5+\frac {5-x}{4}\right ) \left (2 x+\log \left (3+e^x\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.29, antiderivative size = 50, normalized size of antiderivative = 2.27, number of steps used = 11, number of rules used = 8, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {6741, 12, 6742, 2184, 2190, 2279, 2391, 2392} \begin {gather*} -\frac {5 x^2}{8}+\frac {1}{8} (25-x)^2+\frac {75 x}{4}+\frac {1}{4} (25-x) \log \left (\frac {e^x}{3}+1\right )-\frac {1}{4} x \log (3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2184
Rule 2190
Rule 2279
Rule 2391
Rule 2392
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {150+e^x (75-5 x)-12 x+\left (-3-e^x\right ) \log \left (3+e^x\right )}{4 \left (3+e^x\right )} \, dx\\ &=\frac {1}{4} \int \frac {150+e^x (75-5 x)-12 x+\left (-3-e^x\right ) \log \left (3+e^x\right )}{3+e^x} \, dx\\ &=\frac {1}{4} \int \left (75+\frac {3 (-25+x)}{3+e^x}-5 x-\log \left (3+e^x\right )\right ) \, dx\\ &=\frac {75 x}{4}-\frac {5 x^2}{8}-\frac {1}{4} \int \log \left (3+e^x\right ) \, dx+\frac {3}{4} \int \frac {-25+x}{3+e^x} \, dx\\ &=\frac {1}{8} (25-x)^2+\frac {75 x}{4}-\frac {5 x^2}{8}-\frac {1}{4} \int \frac {e^x (-25+x)}{3+e^x} \, dx-\frac {1}{4} \operatorname {Subst}\left (\int \frac {\log (3+x)}{x} \, dx,x,e^x\right )\\ &=\frac {1}{8} (25-x)^2+\frac {75 x}{4}-\frac {5 x^2}{8}-\frac {1}{4} x \log (3)+\frac {1}{4} (25-x) \log \left (1+\frac {e^x}{3}\right )+\frac {1}{4} \int \log \left (1+\frac {e^x}{3}\right ) \, dx-\frac {1}{4} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3}\right )}{x} \, dx,x,e^x\right )\\ &=\frac {1}{8} (25-x)^2+\frac {75 x}{4}-\frac {5 x^2}{8}-\frac {1}{4} x \log (3)+\frac {1}{4} (25-x) \log \left (1+\frac {e^x}{3}\right )+\frac {1}{4} \text {Li}_2\left (-\frac {e^x}{3}\right )+\frac {1}{4} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3}\right )}{x} \, dx,x,e^x\right )\\ &=\frac {1}{8} (25-x)^2+\frac {75 x}{4}-\frac {5 x^2}{8}-\frac {1}{4} x \log (3)+\frac {1}{4} (25-x) \log \left (1+\frac {e^x}{3}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.07, size = 53, normalized size = 2.41 \begin {gather*} \frac {1}{4} \left (75 x-\frac {5 x^2}{2}-x \log (3)-(-25+x) \log \left (1+3 e^{-x}\right )+\text {Li}_2\left (-3 e^{-x}\right )+\text {Li}_2\left (-\frac {e^x}{3}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 19, normalized size = 0.86 \begin {gather*} -\frac {1}{2} \, x^{2} - \frac {1}{4} \, {\left (x - 25\right )} \log \left (e^{x} + 3\right ) + \frac {25}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 24, normalized size = 1.09 \begin {gather*} -\frac {1}{2} \, x^{2} - \frac {1}{4} \, x \log \left (e^{x} + 3\right ) + \frac {25}{2} \, x + \frac {25}{4} \, \log \left (e^{x} + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 25, normalized size = 1.14
method | result | size |
risch | \(-\frac {x \ln \left (3+{\mathrm e}^{x}\right )}{4}-\frac {x^{2}}{2}+\frac {25 x}{2}+\frac {25 \ln \left (3+{\mathrm e}^{x}\right )}{4}\) | \(25\) |
norman | \(\frac {25 x}{2}-\frac {x^{2}}{2}-\frac {x \ln \left (3+{\mathrm e}^{x}\right )}{4}+\frac {25 \ln \left (4 \,{\mathrm e}^{x}+12\right )}{4}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 26, normalized size = 1.18 \begin {gather*} -\frac {1}{2} \, x^{2} - \frac {1}{4} \, {\left (x - 75\right )} \log \left (e^{x} + 3\right ) + \frac {25}{2} \, x - \frac {25}{2} \, \log \left (e^{x} + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 14, normalized size = 0.64 \begin {gather*} -\frac {\left (x-25\right )\,\left (2\,x+\ln \left ({\mathrm {e}}^x+3\right )\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 29, normalized size = 1.32 \begin {gather*} - \frac {x^{2}}{2} - \frac {x \log {\left (e^{x} + 3 \right )}}{4} + \frac {25 x}{2} + \frac {25 \log {\left (e^{x} + 3 \right )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________