Optimal. Leaf size=30 \[ \log \left (8+\log \left (1-e^{x+\frac {1}{2} e^{-e^2} x^2 (3+x)}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.49, antiderivative size = 30, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 191, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {6688, 12, 6684} \begin {gather*} \log \left (\log \left (-e^{\frac {1}{2} e^{-e^2} (x+3) x^2+x}+x+1\right )+8\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-e^2} \left (2 e^{e^2}-2 e^{e^2+x+\frac {1}{2} e^{-e^2} x^2 (3+x)}-3 e^{x+\frac {1}{2} e^{-e^2} x^2 (3+x)} x (2+x)\right )}{2 \left (1-e^{x+\frac {1}{2} e^{-e^2} x^2 (3+x)}+x\right ) \left (8+\log \left (1-e^{x+\frac {1}{2} e^{-e^2} x^2 (3+x)}+x\right )\right )} \, dx\\ &=\frac {1}{2} e^{-e^2} \int \frac {2 e^{e^2}-2 e^{e^2+x+\frac {1}{2} e^{-e^2} x^2 (3+x)}-3 e^{x+\frac {1}{2} e^{-e^2} x^2 (3+x)} x (2+x)}{\left (1-e^{x+\frac {1}{2} e^{-e^2} x^2 (3+x)}+x\right ) \left (8+\log \left (1-e^{x+\frac {1}{2} e^{-e^2} x^2 (3+x)}+x\right )\right )} \, dx\\ &=\log \left (8+\log \left (1-e^{x+\frac {1}{2} e^{-e^2} x^2 (3+x)}+x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 30, normalized size = 1.00 \begin {gather*} \log \left (8+\log \left (1-e^{x+\frac {1}{2} e^{-e^2} x^2 (3+x)}+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 46, normalized size = 1.53 \begin {gather*} \log \left (\log \left ({\left ({\left (x + 1\right )} e^{\left (e^{2}\right )} - e^{\left (\frac {1}{2} \, {\left (x^{3} + 3 \, x^{2} + 2 \, {\left (x + e^{2}\right )} e^{\left (e^{2}\right )}\right )} e^{\left (-e^{2}\right )}\right )}\right )} e^{\left (-e^{2}\right )}\right ) + 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (3 \, x^{2} + 6 \, x + 2 \, e^{\left (e^{2}\right )}\right )} e^{\left (\frac {1}{2} \, {\left (x^{3} + 3 \, x^{2} + 2 \, x e^{\left (e^{2}\right )}\right )} e^{\left (-e^{2}\right )}\right )} - 2 \, e^{\left (e^{2}\right )}}{2 \, {\left (8 \, {\left (x + 1\right )} e^{\left (e^{2}\right )} + {\left ({\left (x + 1\right )} e^{\left (e^{2}\right )} - e^{\left (\frac {1}{2} \, {\left (x^{3} + 3 \, x^{2} + 2 \, x e^{\left (e^{2}\right )}\right )} e^{\left (-e^{2}\right )} + e^{2}\right )}\right )} \log \left (x - e^{\left (\frac {1}{2} \, {\left (x^{3} + 3 \, x^{2} + 2 \, x e^{\left (e^{2}\right )}\right )} e^{\left (-e^{2}\right )}\right )} + 1\right ) - 8 \, e^{\left (\frac {1}{2} \, {\left (x^{3} + 3 \, x^{2} + 2 \, x e^{\left (e^{2}\right )}\right )} e^{\left (-e^{2}\right )} + e^{2}\right )}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.45, size = 31, normalized size = 1.03
method | result | size |
risch | \(\ln \left (\ln \left (-{\mathrm e}^{\frac {x \left (x^{2}+2 \,{\mathrm e}^{{\mathrm e}^{2}}+3 x \right ) {\mathrm e}^{-{\mathrm e}^{2}}}{2}}+x +1\right )+8\right )\) | \(31\) |
norman | \(\ln \left (\ln \left (-{\mathrm e}^{\frac {\left (2 x \,{\mathrm e}^{{\mathrm e}^{2}}+x^{3}+3 x^{2}\right ) {\mathrm e}^{-{\mathrm e}^{2}}}{2}}+x +1\right )+8\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 32, normalized size = 1.07 \begin {gather*} \log \left (\log \left (x - e^{\left (\frac {1}{2} \, x^{3} e^{\left (-e^{2}\right )} + \frac {3}{2} \, x^{2} e^{\left (-e^{2}\right )} + x\right )} + 1\right ) + 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.42, size = 32, normalized size = 1.07 \begin {gather*} \ln \left (\ln \left (x-{\mathrm {e}}^{\frac {{\mathrm {e}}^{-{\mathrm {e}}^2}\,x^3}{2}+\frac {3\,{\mathrm {e}}^{-{\mathrm {e}}^2}\,x^2}{2}+x}+1\right )+8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.10, size = 32, normalized size = 1.07 \begin {gather*} \log {\left (\log {\left (x - e^{\frac {\frac {x^{3}}{2} + \frac {3 x^{2}}{2} + x e^{e^{2}}}{e^{e^{2}}}} + 1 \right )} + 8 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________