Optimal. Leaf size=23 \[ -((-2+x) x)+\frac {2 x}{(9+x) \log \left (\frac {5}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {18+2 x+18 \log \left (\frac {5}{x}\right )+\left (162-126 x-34 x^2-2 x^3\right ) \log ^2\left (\frac {5}{x}\right )}{\left (81+18 x+x^2\right ) \log ^2\left (\frac {5}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18+2 x+18 \log \left (\frac {5}{x}\right )+\left (162-126 x-34 x^2-2 x^3\right ) \log ^2\left (\frac {5}{x}\right )}{(9+x)^2 \log ^2\left (\frac {5}{x}\right )} \, dx\\ &=\int \left (-2 (-1+x)+\frac {2}{(9+x) \log ^2\left (\frac {5}{x}\right )}+\frac {18}{(9+x)^2 \log \left (\frac {5}{x}\right )}\right ) \, dx\\ &=-(1-x)^2+2 \int \frac {1}{(9+x) \log ^2\left (\frac {5}{x}\right )} \, dx+18 \int \frac {1}{(9+x)^2 \log \left (\frac {5}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 26, normalized size = 1.13 \begin {gather*} 2 \left (x-\frac {x^2}{2}+\frac {x}{(9+x) \log \left (\frac {5}{x}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 38, normalized size = 1.65 \begin {gather*} -\frac {{\left (x^{3} + 7 \, x^{2} - 18 \, x\right )} \log \left (\frac {5}{x}\right ) - 2 \, x}{{\left (x + 9\right )} \log \left (\frac {5}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 34, normalized size = 1.48 \begin {gather*} x^{2} {\left (\frac {2}{x} - 1\right )} + \frac {2}{\frac {9 \, \log \left (\frac {5}{x}\right )}{x} + \log \left (\frac {5}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.43, size = 26, normalized size = 1.13
method | result | size |
risch | \(-x^{2}+2 x +\frac {2 x}{\left (x +9\right ) \ln \left (\frac {5}{x}\right )}\) | \(26\) |
norman | \(\frac {-162 \ln \left (\frac {5}{x}\right )+2 x -7 x^{2} \ln \left (\frac {5}{x}\right )-x^{3} \ln \left (\frac {5}{x}\right )}{\left (x +9\right ) \ln \left (\frac {5}{x}\right )}\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.95, size = 59, normalized size = 2.57 \begin {gather*} -\frac {x^{3} \log \relax (5) + 7 \, x^{2} \log \relax (5) - 2 \, x {\left (9 \, \log \relax (5) + 1\right )} - {\left (x^{3} + 7 \, x^{2} - 18 \, x\right )} \log \relax (x)}{x \log \relax (5) - {\left (x + 9\right )} \log \relax (x) + 9 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.99, size = 45, normalized size = 1.96 \begin {gather*} \frac {18\,x}{x+9}-\frac {7\,x^2}{x+9}-\frac {x^3}{x+9}+\frac {2\,x}{\ln \left (\frac {5}{x}\right )\,\left (x+9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.74 \begin {gather*} - x^{2} + 2 x + \frac {2 x}{\left (x + 9\right ) \log {\left (\frac {5}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________