Optimal. Leaf size=20 \[ 8+\frac {1}{4} e^{2 \left (-7+x-\frac {1}{\log (\log (x))}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.03, antiderivative size = 18, normalized size of antiderivative = 0.90, number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 6688, 6706} \begin {gather*} \frac {1}{4} e^{-2 \left (-x+\frac {1}{\log (\log (x))}+7\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{\frac {-2+(-14+2 x) \log (\log (x))}{\log (\log (x))}} \left (1+x \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))} \, dx\\ &=\frac {1}{2} \int \frac {e^{-2 \left (7-x+\frac {1}{\log (\log (x))}\right )} \left (1+x \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))} \, dx\\ &=\frac {1}{4} e^{-2 \left (7-x+\frac {1}{\log (\log (x))}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 18, normalized size = 0.90 \begin {gather*} \frac {1}{4} e^{-14+2 x-\frac {2}{\log (\log (x))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 19, normalized size = 0.95 \begin {gather*} \frac {1}{4} \, e^{\left (\frac {2 \, {\left ({\left (x - 7\right )} \log \left (\log \relax (x)\right ) - 1\right )}}{\log \left (\log \relax (x)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 15, normalized size = 0.75 \begin {gather*} \frac {1}{4} \, e^{\left (2 \, x - \frac {2}{\log \left (\log \relax (x)\right )} - 14\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 23, normalized size = 1.15
method | result | size |
risch | \(\frac {{\mathrm e}^{\frac {2 x \ln \left (\ln \relax (x )\right )-14 \ln \left (\ln \relax (x )\right )-2}{\ln \left (\ln \relax (x )\right )}}}{4}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{2} \, \int \frac {{\left (x \log \relax (x) \log \left (\log \relax (x)\right )^{2} + 1\right )} e^{\left (\frac {2 \, {\left ({\left (x - 7\right )} \log \left (\log \relax (x)\right ) - 1\right )}}{\log \left (\log \relax (x)\right )}\right )}}{x \log \relax (x) \log \left (\log \relax (x)\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.83, size = 16, normalized size = 0.80 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-14}\,{\mathrm {e}}^{-\frac {2}{\ln \left (\ln \relax (x)\right )}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 19, normalized size = 0.95 \begin {gather*} \frac {e^{\frac {\left (2 x - 14\right ) \log {\left (\log {\relax (x )} \right )} - 2}{\log {\left (\log {\relax (x )} \right )}}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________