Optimal. Leaf size=22 \[ x+\frac {1}{x \left (4-3 \left (3+e^{8+x}\right )^2+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {23-2 x+529 x^2+108 e^{24+3 x} x^2+9 e^{32+4 x} x^2-46 x^3+x^4+e^{8+x} \left (18+18 x+828 x^2-36 x^3\right )+e^{16+2 x} \left (3+6 x+462 x^2-6 x^3\right )}{529 x^2+108 e^{24+3 x} x^2+9 e^{32+4 x} x^2-46 x^3+x^4+e^{8+x} \left (828 x^2-36 x^3\right )+e^{16+2 x} \left (462 x^2-6 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {23-2 x+529 x^2+108 e^{3 (8+x)} x^2+9 e^{4 (8+x)} x^2-46 x^3+x^4+e^{2 (8+x)} \left (3+6 x+462 x^2-6 x^3\right )+18 e^{8+x} \left (1+x+46 x^2-2 x^3\right )}{\left (23+18 e^{8+x}+3 e^{2 (8+x)}-x\right )^2 x^2} \, dx\\ &=\int \left (1-\frac {47+18 e^{8+x}-2 x}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right )^2 x}+\frac {1+2 x}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right ) x^2}\right ) \, dx\\ &=x-\int \frac {47+18 e^{8+x}-2 x}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right )^2 x} \, dx+\int \frac {1+2 x}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right ) x^2} \, dx\\ &=x-\int \left (-\frac {2}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right )^2}+\frac {47}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right )^2 x}+\frac {18 e^{8+x}}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right )^2 x}\right ) \, dx+\int \left (\frac {1}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right ) x^2}+\frac {2}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right ) x}\right ) \, dx\\ &=x+2 \int \frac {1}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right )^2} \, dx+2 \int \frac {1}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right ) x} \, dx-18 \int \frac {e^{8+x}}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right )^2 x} \, dx-47 \int \frac {1}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right )^2 x} \, dx+\int \frac {1}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right ) x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 30, normalized size = 1.36 \begin {gather*} -\frac {1}{\left (23+18 e^{8+x}+3 e^{16+2 x}-x\right ) x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.49, size = 56, normalized size = 2.55 \begin {gather*} \frac {x^{3} - 3 \, x^{2} e^{\left (2 \, x + 16\right )} - 18 \, x^{2} e^{\left (x + 8\right )} - 23 \, x^{2} + 1}{x^{2} - 3 \, x e^{\left (2 \, x + 16\right )} - 18 \, x e^{\left (x + 8\right )} - 23 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.85, size = 56, normalized size = 2.55 \begin {gather*} \frac {x^{3} - 3 \, x^{2} e^{\left (2 \, x + 16\right )} - 18 \, x^{2} e^{\left (x + 8\right )} - 23 \, x^{2} + 2}{x^{2} - 3 \, x e^{\left (2 \, x + 16\right )} - 18 \, x e^{\left (x + 8\right )} - 23 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 29, normalized size = 1.32
method | result | size |
risch | \(x -\frac {1}{x \left (3 \,{\mathrm e}^{2 x +16}+18 \,{\mathrm e}^{x +8}-x +23\right )}\) | \(29\) |
norman | \(\frac {-1+529 x +414 \,{\mathrm e}^{8} {\mathrm e}^{x} x +69 x \,{\mathrm e}^{16} {\mathrm e}^{2 x}-x^{3}+18 \,{\mathrm e}^{8} {\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{16} {\mathrm e}^{2 x} x^{2}}{x \left (3 \,{\mathrm e}^{16} {\mathrm e}^{2 x}+18 \,{\mathrm e}^{8} {\mathrm e}^{x}-x +23\right )}\) | \(84\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 56, normalized size = 2.55 \begin {gather*} \frac {x^{3} - 3 \, x^{2} e^{\left (2 \, x + 16\right )} - 18 \, x^{2} e^{\left (x + 8\right )} - 23 \, x^{2} + 1}{x^{2} - 3 \, x e^{\left (2 \, x + 16\right )} - 18 \, x e^{\left (x + 8\right )} - 23 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {{\mathrm {e}}^{x+8}\,\left (-36\,x^3+828\,x^2+18\,x+18\right )-2\,x+{\mathrm {e}}^{2\,x+16}\,\left (-6\,x^3+462\,x^2+6\,x+3\right )+108\,x^2\,{\mathrm {e}}^{3\,x+24}+9\,x^2\,{\mathrm {e}}^{4\,x+32}+529\,x^2-46\,x^3+x^4+23}{{\mathrm {e}}^{x+8}\,\left (828\,x^2-36\,x^3\right )+{\mathrm {e}}^{2\,x+16}\,\left (462\,x^2-6\,x^3\right )+108\,x^2\,{\mathrm {e}}^{3\,x+24}+9\,x^2\,{\mathrm {e}}^{4\,x+32}+529\,x^2-46\,x^3+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 31, normalized size = 1.41 \begin {gather*} x - \frac {1}{- x^{2} + 3 x e^{16} e^{2 x} + 18 x e^{8} e^{x} + 23 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________