Optimal. Leaf size=27 \[ 3+x+e^{e^2} \left (1+\frac {e^{-2+x}}{x}+5 x-\log (5)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 24, normalized size of antiderivative = 0.89, number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {14, 2197} \begin {gather*} \left (1+5 e^{e^2}\right ) x+\frac {e^{x+e^2-2}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+5 e^{e^2}+\frac {e^{-2+e^2+x} (-1+x)}{x^2}\right ) \, dx\\ &=\left (1+5 e^{e^2}\right ) x+\int \frac {e^{-2+e^2+x} (-1+x)}{x^2} \, dx\\ &=\frac {e^{-2+e^2+x}}{x}+\left (1+5 e^{e^2}\right ) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 0.81 \begin {gather*} \frac {e^{-2+e^2+x}}{x}+x+5 e^{e^2} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 22, normalized size = 0.81 \begin {gather*} \frac {x^{2} + {\left (5 \, x^{2} + e^{\left (x - 2\right )}\right )} e^{\left (e^{2}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.73, size = 22, normalized size = 0.81 \begin {gather*} \frac {5 \, x^{2} e^{\left (e^{2}\right )} + x^{2} + e^{\left (x + e^{2} - 2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 19, normalized size = 0.70
method | result | size |
risch | \(5 x \,{\mathrm e}^{{\mathrm e}^{2}}+x +\frac {{\mathrm e}^{{\mathrm e}^{2}+x -2}}{x}\) | \(19\) |
norman | \(\frac {\left (5 \,{\mathrm e}^{{\mathrm e}^{2}}+1\right ) x^{2}+{\mathrm e}^{x -2} {\mathrm e}^{{\mathrm e}^{2}}}{x}\) | \(25\) |
derivativedivides | \(x -2+{\mathrm e}^{{\mathrm e}^{2}} \left (-\frac {{\mathrm e}^{x -2}}{x}-{\mathrm e}^{-2} \expIntegralEi \left (1, -x \right )\right )+{\mathrm e}^{{\mathrm e}^{2}} \left ({\mathrm e}^{-2} \expIntegralEi \left (1, -x \right )+\frac {2 \,{\mathrm e}^{x -2}}{x}\right )+5 \,{\mathrm e}^{{\mathrm e}^{2}} \left (x -2\right )\) | \(57\) |
default | \(x -2+{\mathrm e}^{{\mathrm e}^{2}} \left (-\frac {{\mathrm e}^{x -2}}{x}-{\mathrm e}^{-2} \expIntegralEi \left (1, -x \right )\right )+{\mathrm e}^{{\mathrm e}^{2}} \left ({\mathrm e}^{-2} \expIntegralEi \left (1, -x \right )+\frac {2 \,{\mathrm e}^{x -2}}{x}\right )+5 \,{\mathrm e}^{{\mathrm e}^{2}} \left (x -2\right )\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.47, size = 28, normalized size = 1.04 \begin {gather*} {\rm Ei}\relax (x) e^{\left (e^{2} - 2\right )} + 5 \, x e^{\left (e^{2}\right )} - e^{\left (e^{2} - 2\right )} \Gamma \left (-1, -x\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 19, normalized size = 0.70 \begin {gather*} x+5\,x\,{\mathrm {e}}^{{\mathrm {e}}^2}+\frac {{\mathrm {e}}^{-2}\,{\mathrm {e}}^{{\mathrm {e}}^2}\,{\mathrm {e}}^x}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 0.74 \begin {gather*} x \left (1 + 5 e^{e^{2}}\right ) + \frac {e^{x - 2} e^{e^{2}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________