Optimal. Leaf size=25 \[ e^{x^2}+\frac {1}{2} x \left (5-\frac {4+x}{x}\right )^{-5 x} \]
________________________________________________________________________________________
Rubi [F] time = 1.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (\frac {-4+4 x}{x}\right )^{-5 x} \left (-1-4 x+e^{x^2} \left (\frac {-4+4 x}{x}\right )^{5 x} \left (-4 x+4 x^2\right )+\left (5 x-5 x^2\right ) \log \left (\frac {-4+4 x}{x}\right )\right )}{-2+2 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (4-\frac {4}{x}\right )^{-5 x} \left (1+4 x-e^{x^2} \left (\frac {-4+4 x}{x}\right )^{5 x} \left (-4 x+4 x^2\right )-\left (5 x-5 x^2\right ) \log \left (\frac {-4+4 x}{x}\right )\right )}{2-2 x} \, dx\\ &=\int \frac {\left (4-\frac {4}{x}\right )^{-5 x} \left (1+4 x-4 e^{x^2} \left (4-\frac {4}{x}\right )^{5 x} (-1+x) x+5 (-1+x) x \log \left (4-\frac {4}{x}\right )\right )}{2-2 x} \, dx\\ &=\int \left (2 e^{x^2} x+\frac {\left (4-\frac {4}{x}\right )^{-5 x} \left (-1-4 x+5 x \log \left (4-\frac {4}{x}\right )-5 x^2 \log \left (4-\frac {4}{x}\right )\right )}{2 (-1+x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {\left (4-\frac {4}{x}\right )^{-5 x} \left (-1-4 x+5 x \log \left (4-\frac {4}{x}\right )-5 x^2 \log \left (4-\frac {4}{x}\right )\right )}{-1+x} \, dx+2 \int e^{x^2} x \, dx\\ &=e^{x^2}+\frac {1}{2} \int \left (\frac {\left (4-\frac {4}{x}\right )^{-5 x} (-1-4 x)}{-1+x}-5 \left (4-\frac {4}{x}\right )^{-5 x} x \log \left (4-\frac {4}{x}\right )\right ) \, dx\\ &=e^{x^2}+\frac {1}{2} \int \frac {\left (4-\frac {4}{x}\right )^{-5 x} (-1-4 x)}{-1+x} \, dx-\frac {5}{2} \int \left (4-\frac {4}{x}\right )^{-5 x} x \log \left (4-\frac {4}{x}\right ) \, dx\\ &=e^{x^2}+\frac {1}{2} \int \left (-4 \left (4-\frac {4}{x}\right )^{-5 x}-\frac {5 \left (4-\frac {4}{x}\right )^{-5 x}}{-1+x}\right ) \, dx+\frac {5}{2} \int \frac {\int \left (4-\frac {4}{x}\right )^{-5 x} x \, dx}{(-1+x) x} \, dx-\frac {1}{2} \left (5 \log \left (4-\frac {4}{x}\right )\right ) \int \left (4-\frac {4}{x}\right )^{-5 x} x \, dx\\ &=e^{x^2}-2 \int \left (4-\frac {4}{x}\right )^{-5 x} \, dx-\frac {5}{2} \int \frac {\left (4-\frac {4}{x}\right )^{-5 x}}{-1+x} \, dx+\frac {5}{2} \int \left (\frac {\int \left (4-\frac {4}{x}\right )^{-5 x} x \, dx}{-1+x}-\frac {\int \left (4-\frac {4}{x}\right )^{-5 x} x \, dx}{x}\right ) \, dx-\frac {1}{2} \left (5 \log \left (4-\frac {4}{x}\right )\right ) \int \left (4-\frac {4}{x}\right )^{-5 x} x \, dx\\ &=e^{x^2}-2 \int \left (4-\frac {4}{x}\right )^{-5 x} \, dx-\frac {5}{2} \int \frac {\left (4-\frac {4}{x}\right )^{-5 x}}{-1+x} \, dx+\frac {5}{2} \int \frac {\int \left (4-\frac {4}{x}\right )^{-5 x} x \, dx}{-1+x} \, dx-\frac {5}{2} \int \frac {\int \left (4-\frac {4}{x}\right )^{-5 x} x \, dx}{x} \, dx-\frac {1}{2} \left (5 \log \left (4-\frac {4}{x}\right )\right ) \int \left (4-\frac {4}{x}\right )^{-5 x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.08, size = 25, normalized size = 1.00 \begin {gather*} \frac {1}{2} \left (2 e^{x^2}+\left (4-\frac {4}{x}\right )^{-5 x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 36, normalized size = 1.44 \begin {gather*} \frac {2 \, \left (\frac {4 \, {\left (x - 1\right )}}{x}\right )^{5 \, x} e^{\left (x^{2}\right )} + x}{2 \, \left (\frac {4 \, {\left (x - 1\right )}}{x}\right )^{5 \, x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (x^{2} - x\right )} \left (\frac {4 \, {\left (x - 1\right )}}{x}\right )^{5 \, x} e^{\left (x^{2}\right )} - 5 \, {\left (x^{2} - x\right )} \log \left (\frac {4 \, {\left (x - 1\right )}}{x}\right ) - 4 \, x - 1}{2 \, {\left (x - 1\right )} \left (\frac {4 \, {\left (x - 1\right )}}{x}\right )^{5 \, x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.50, size = 25, normalized size = 1.00
method | result | size |
default | \(\frac {x \,{\mathrm e}^{-5 x \ln \left (\frac {4 x -4}{x}\right )}}{2}+{\mathrm e}^{x^{2}}\) | \(25\) |
risch | \({\mathrm e}^{x^{2}}+\frac {x \,{\mathrm e}^{-\frac {5 x \left (-i \pi \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x}\right )^{3}+i \pi \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+i \pi \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x}\right )^{2} \mathrm {csgn}\left (i \left (x -1\right )\right )-i \pi \,\mathrm {csgn}\left (\frac {i \left (x -1\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -1\right )\right )-2 \ln \relax (x )+2 \ln \left (x -1\right )+4 \ln \relax (2)\right )}{2}}}{2}\) | \(118\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.78, size = 38, normalized size = 1.52 \begin {gather*} \frac {x e^{\left (-5 \, x \log \left (x - 1\right ) + 5 \, x \log \relax (x)\right )} + 2 \, e^{\left (x^{2} + 10 \, x \log \relax (2)\right )}}{2 \cdot 2^{10 \, x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.01, size = 21, normalized size = 0.84 \begin {gather*} {\mathrm {e}}^{x^2}+\frac {x}{2\,{\left (4-\frac {4}{x}\right )}^{5\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 20, normalized size = 0.80 \begin {gather*} \frac {x e^{- 5 x \log {\left (\frac {4 x - 4}{x} \right )}}}{2} + e^{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________