Optimal. Leaf size=28 \[ e^{e^{-2+x}-e^x-x} \log \left (\frac {e^{-x} x}{2}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.20, antiderivative size = 60, normalized size of antiderivative = 2.14, number of steps used = 1, number of rules used = 1, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {2288} \begin {gather*} \frac {e^{-x+e^{x-2}-e^x} \left (-e^{x-2} x+e^x x+x\right ) \log \left (\frac {e^{-x} x}{2}\right )}{\left (-e^{x-2}+e^x+1\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{e^{-2+x}-e^x-x} \left (x-e^{-2+x} x+e^x x\right ) \log \left (\frac {e^{-x} x}{2}\right )}{\left (1-e^{-2+x}+e^x\right ) x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 28, normalized size = 1.00 \begin {gather*} e^{e^{-2+x}-e^x-x} \log \left (\frac {e^{-x} x}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 30, normalized size = 1.07 \begin {gather*} e^{\left (-{\left (x e^{2} + {\left (e^{2} - 1\right )} e^{x} - e^{2} \log \left (\log \left (\frac {1}{2} \, x e^{\left (-x\right )}\right )\right )\right )} e^{\left (-2\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x e^{\left (x - 2\right )} - x e^{x} - x\right )} \log \left (\frac {1}{2} \, x e^{\left (-x\right )}\right ) - x + 1\right )} e^{\left (-x + e^{\left (x - 2\right )} - e^{x} + \log \left (\log \left (\frac {1}{2} \, x e^{\left (-x\right )}\right )\right )\right )}}{x \log \left (\frac {1}{2} \, x e^{\left (-x\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.43, size = 272, normalized size = 9.71
method | result | size |
risch | \(\frac {2 i \left (-\ln \relax (2)+\ln \relax (x )-\ln \left ({\mathrm e}^{x}\right )-\frac {i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )}{2}+\frac {i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}}{2}+\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}}{2}-\frac {i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3}}{2}\right ) \left (-\ln \relax (2)+\ln \relax (x )-\ln \left ({\mathrm e}^{x}\right )-\frac {i \pi \,\mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right ) \left (-\mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )+\mathrm {csgn}\left (i {\mathrm e}^{-x}\right )\right )}{2}\right ) {\mathrm e}^{-{\mathrm e}^{x}+{\mathrm e}^{x -2}-x}}{2 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{x}\right )+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )+\pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3}-2 i \ln \relax (2)-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}}\) | \(272\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 23, normalized size = 0.82 \begin {gather*} -{\left (x + \log \relax (2) - \log \relax (x)\right )} e^{\left (-x + e^{\left (x - 2\right )} - e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {{\mathrm {e}}^{{\mathrm {e}}^{x-2}-x-{\mathrm {e}}^x+\ln \left (\ln \left (\frac {x\,{\mathrm {e}}^{-x}}{2}\right )\right )}\,\left (x+\ln \left (\frac {x\,{\mathrm {e}}^{-x}}{2}\right )\,\left (x-x\,{\mathrm {e}}^{x-2}+x\,{\mathrm {e}}^x\right )-1\right )}{x\,\ln \left (\frac {x\,{\mathrm {e}}^{-x}}{2}\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________