Optimal. Leaf size=25 \[ e^2+x+\log \left (\log \left (-5+\frac {5 (4-2 x) x+x^2}{e^3}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 20, normalized size of antiderivative = 0.80, number of steps used = 3, number of rules used = 2, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6728, 6684} \begin {gather*} \log \left (\log \left (-\frac {9 x^2}{e^3}+\frac {20 x}{e^3}-5\right )\right )+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {2 (-10+9 x)}{\left (5 e^3-20 x+9 x^2\right ) \log \left (-5+\frac {20 x}{e^3}-\frac {9 x^2}{e^3}\right )}\right ) \, dx\\ &=x+2 \int \frac {-10+9 x}{\left (5 e^3-20 x+9 x^2\right ) \log \left (-5+\frac {20 x}{e^3}-\frac {9 x^2}{e^3}\right )} \, dx\\ &=x+\log \left (\log \left (-5+\frac {20 x}{e^3}-\frac {9 x^2}{e^3}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 16, normalized size = 0.64 \begin {gather*} x+\log \left (\log \left (-5+\frac {(20-9 x) x}{e^3}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 21, normalized size = 0.84 \begin {gather*} x + \log \left (\log \left (-{\left (9 \, x^{2} - 20 \, x + 5 \, e^{3}\right )} e^{\left (-3\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.62, size = 19, normalized size = 0.76 \begin {gather*} x + \log \left (\log \left (-9 \, x^{2} + 20 \, x - 5 \, e^{3}\right ) - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.92, size = 21, normalized size = 0.84
method | result | size |
risch | \(x +\ln \left (\ln \left (\left (-5 \,{\mathrm e}^{3}-9 x^{2}+20 x \right ) {\mathrm e}^{-3}\right )\right )\) | \(21\) |
norman | \(x +\ln \left (\ln \left (\left (-5 \,{\mathrm e}^{3}-9 x^{2}+20 x \right ) {\mathrm e}^{-3}\right )\right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 19, normalized size = 0.76 \begin {gather*} x + \log \left (\log \left (-9 \, x^{2} + 20 \, x - 5 \, e^{3}\right ) - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 18, normalized size = 0.72 \begin {gather*} x+\ln \left (\ln \left (-9\,{\mathrm {e}}^{-3}\,x^2+20\,{\mathrm {e}}^{-3}\,x-5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 20, normalized size = 0.80 \begin {gather*} x + \log {\left (\log {\left (\frac {- 9 x^{2} + 20 x - 5 e^{3}}{e^{3}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________