Optimal. Leaf size=18 \[ 1+\frac {e^{-x} \log \left (x^2\right )}{5 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 16, normalized size of antiderivative = 0.89, number of steps used = 9, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {12, 6742, 2177, 2178, 2197, 2554} \begin {gather*} \frac {e^{-x} \log \left (x^2\right )}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2177
Rule 2178
Rule 2197
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{-x} \left (2+(-1-x) \log \left (x^2\right )\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {2 e^{-x}}{x^2}-\frac {e^{-x} (1+x) \log \left (x^2\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {e^{-x} (1+x) \log \left (x^2\right )}{x^2} \, dx\right )+\frac {2}{5} \int \frac {e^{-x}}{x^2} \, dx\\ &=-\frac {2 e^{-x}}{5 x}+\frac {e^{-x} \log \left (x^2\right )}{5 x}+\frac {1}{5} \int -\frac {2 e^{-x}}{x^2} \, dx-\frac {2}{5} \int \frac {e^{-x}}{x} \, dx\\ &=-\frac {2 e^{-x}}{5 x}-\frac {2 \text {Ei}(-x)}{5}+\frac {e^{-x} \log \left (x^2\right )}{5 x}-\frac {2}{5} \int \frac {e^{-x}}{x^2} \, dx\\ &=-\frac {2 \text {Ei}(-x)}{5}+\frac {e^{-x} \log \left (x^2\right )}{5 x}+\frac {2}{5} \int \frac {e^{-x}}{x} \, dx\\ &=\frac {e^{-x} \log \left (x^2\right )}{5 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 16, normalized size = 0.89 \begin {gather*} \frac {e^{-x} \log \left (x^2\right )}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.25, size = 13, normalized size = 0.72 \begin {gather*} \frac {e^{\left (-x\right )} \log \left (x^{2}\right )}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 13, normalized size = 0.72 \begin {gather*} \frac {e^{\left (-x\right )} \log \left (x^{2}\right )}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 14, normalized size = 0.78
method | result | size |
default | \(\frac {\ln \left (x^{2}\right ) {\mathrm e}^{-x}}{5 x}\) | \(14\) |
norman | \(\frac {\ln \left (x^{2}\right ) {\mathrm e}^{-x}}{5 x}\) | \(14\) |
risch | \(\frac {2 \ln \relax (x ) {\mathrm e}^{-x}}{5 x}-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (\mathrm {csgn}\left (i x \right )^{2}-2 \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )+\mathrm {csgn}\left (i x^{2}\right )^{2}\right ) {\mathrm e}^{-x}}{10 x}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {2 \, e^{\left (-x\right )} \log \relax (x)}{5 \, x} - \frac {2}{5} \, \Gamma \left (-1, x\right ) - \frac {2}{5} \, \int \frac {e^{\left (-x\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.78, size = 13, normalized size = 0.72 \begin {gather*} \frac {\ln \left (x^2\right )\,{\mathrm {e}}^{-x}}{5\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 10, normalized size = 0.56 \begin {gather*} \frac {e^{- x} \log {\left (x^{2} \right )}}{5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________