Optimal. Leaf size=24 \[ \left (-\frac {1}{x}+x\right )^{1+e^{e^{15+(x-\log (2))^2}}} \]
________________________________________________________________________________________
Rubi [F] time = 18.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-1+x^2\right ) \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \left (1+x^2+e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}} \left (1+x^2+e^{15+x^2-2 x \log (2)+\log ^2(2)} \left (-2 x^2+2 x^4+\left (2 x-2 x^3\right ) \log (2)\right ) \log \left (\frac {-1+x^2}{x}\right )\right )\right )}{x \left (-x+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \left (1+x^2+e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}} \left (1+x^2+e^{15+x^2-2 x \log (2)+\log ^2(2)} \left (-2 x^2+2 x^4+\left (2 x-2 x^3\right ) \log (2)\right ) \log \left (\frac {-1+x^2}{x}\right )\right )\right )}{x^2} \, dx\\ &=\int \left (\frac {\left (1+e^{4^{-x} e^{15+x^2+\log ^2(2)}}\right ) \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \left (1+x^2\right )}{x^2}+\frac {2^{1-2 x} \exp \left (2^{-2 x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) (1-x) (1+x) \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} (-x+\log (2)) \log \left (\frac {-1+x^2}{x}\right )}{x}\right ) \, dx\\ &=\int \frac {\left (1+e^{4^{-x} e^{15+x^2+\log ^2(2)}}\right ) \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \left (1+x^2\right )}{x^2} \, dx+\int \frac {2^{1-2 x} \exp \left (2^{-2 x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) (1-x) (1+x) \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} (-x+\log (2)) \log \left (\frac {-1+x^2}{x}\right )}{x} \, dx\\ &=-\left (\log \left (\frac {-1+x^2}{x}\right ) \int 2^{1-2 x} \exp \left (2^{-2 x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \, dx\right )+\log \left (\frac {-1+x^2}{x}\right ) \int 2^{1-2 x} \exp \left (2^{-2 x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) x^2 \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \, dx+\left (\log (2) \log \left (\frac {-1+x^2}{x}\right )\right ) \int \frac {2^{1-2 x} \exp \left (2^{-2 x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}}}{x} \, dx-\left (\log (2) \log \left (\frac {-1+x^2}{x}\right )\right ) \int 2^{1-2 x} \exp \left (2^{-2 x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) x \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \, dx+\int \left (\frac {\left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \left (1+x^2\right )}{x^2}+\frac {e^{4^{-x} e^{15+x^2+\log ^2(2)}} \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \left (1+x^2\right )}{x^2}\right ) \, dx-\int \frac {\left (1+x^2\right ) \left (\int 2^{1-2 x} e^{15+4^{-x} e^{15+x^2+\log ^2(2)}+x^2+\log ^2(2)} \left (-\frac {1}{x}+x\right )^{e^{4^{-x} e^{15+x^2+\log ^2(2)}}} \, dx-\log (2) \int \frac {2^{1-2 x} e^{15+4^{-x} e^{15+x^2+\log ^2(2)}+x^2+\log ^2(2)} \left (-\frac {1}{x}+x\right )^{e^{4^{-x} e^{15+x^2+\log ^2(2)}}}}{x} \, dx+\log (2) \int 2^{1-2 x} e^{15+4^{-x} e^{15+x^2+\log ^2(2)}+x^2+\log ^2(2)} x \left (-\frac {1}{x}+x\right )^{e^{4^{-x} e^{15+x^2+\log ^2(2)}}} \, dx-\int 2^{1-2 x} e^{15+4^{-x} e^{15+x^2+\log ^2(2)}+x^2+\log ^2(2)} x^2 \left (-\frac {1}{x}+x\right )^{e^{4^{-x} e^{15+x^2+\log ^2(2)}}} \, dx\right )}{x \left (1-x^2\right )} \, dx\\ &=-\left (\log \left (\frac {-1+x^2}{x}\right ) \int 2^{1-2 x} \exp \left (2^{-2 x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \, dx\right )+\log \left (\frac {-1+x^2}{x}\right ) \int 2^{1-2 x} \exp \left (2^{-2 x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) x^2 \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \, dx+\left (\log (2) \log \left (\frac {-1+x^2}{x}\right )\right ) \int \frac {2^{1-2 x} \exp \left (2^{-2 x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}}}{x} \, dx-\left (\log (2) \log \left (\frac {-1+x^2}{x}\right )\right ) \int 2^{1-2 x} \exp \left (2^{-2 x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) x \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \, dx+\int \frac {\left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \left (1+x^2\right )}{x^2} \, dx+\int \frac {e^{4^{-x} e^{15+x^2+\log ^2(2)}} \left (\frac {-1+x^2}{x}\right )^{e^{e^{15+x^2-2 x \log (2)+\log ^2(2)}}} \left (1+x^2\right )}{x^2} \, dx-\int \left (-\frac {\left (1+x^2\right ) \left (\int 2^{1-2 x} e^{15+4^{-x} e^{15+x^2+\log ^2(2)}+x^2+\log ^2(2)} \left (-\frac {1}{x}+x\right )^{e^{4^{-x} e^{15+x^2+\log ^2(2)}}} \, dx-\log (2) \int \frac {2^{1-2 x} e^{15+4^{-x} e^{15+x^2+\log ^2(2)}+x^2+\log ^2(2)} \left (-\frac {1}{x}+x\right )^{e^{4^{-x} e^{15+x^2+\log ^2(2)}}}}{x} \, dx+\log (2) \int 2^{1-2 x} e^{15+4^{-x} e^{15+x^2+\log ^2(2)}+x^2+\log ^2(2)} x \left (-\frac {1}{x}+x\right )^{e^{4^{-x} e^{15+x^2+\log ^2(2)}}} \, dx\right )}{x \left (-1+x^2\right )}+\frac {\left (-1-x^2\right ) \int 2^{1-2 x} \exp \left (4^{-x} e^{15+x^2+\log ^2(2)}+x^2+15 \left (1+\frac {\log ^2(2)}{15}\right )\right ) x^2 \left (\frac {-1+x^2}{x}\right )^{e^{4^{-x} e^{15+x^2+\log ^2(2)}}} \, dx}{x \left (1-x^2\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.34, size = 28, normalized size = 1.17 \begin {gather*} \left (-\frac {1}{x}+x\right )^{1+e^{e^{15+x^2+\log ^2(2)-x \log (4)}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.07, size = 39, normalized size = 1.62 \begin {gather*} e^{\left (e^{\left (e^{\left (x^{2} - 2 \, x \log \relax (2) + \log \relax (2)^{2} + 15\right )}\right )} \log \left (\frac {x^{2} - 1}{x}\right ) + \log \left (\frac {x^{2} - 1}{x}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 5.31, size = 35, normalized size = 1.46 \begin {gather*} e^{\left (e^{\left (e^{\left (x^{2} - 2 \, x \log \relax (2) + \log \relax (2)^{2} + 15\right )}\right )} \log \left (x - \frac {1}{x}\right ) + \log \left (x - \frac {1}{x}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.52, size = 134, normalized size = 5.58
method | result | size |
risch | \(\frac {\left (x^{2}-1\right ) x^{-{\mathrm e}^{4^{-x} {\mathrm e}^{\ln \relax (2)^{2}+15+x^{2}}}} \left (x^{2}-1\right )^{{\mathrm e}^{4^{-x} {\mathrm e}^{\ln \relax (2)^{2}+15+x^{2}}}} {\mathrm e}^{-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (x^{2}-1\right )}{x}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (x^{2}-1\right )}{x}\right )+\mathrm {csgn}\left (i \left (x^{2}-1\right )\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (x^{2}-1\right )}{x}\right )+\mathrm {csgn}\left (\frac {i}{x}\right )\right ) \left ({\mathrm e}^{\left (\frac {1}{4}\right )^{x} {\mathrm e}^{\ln \relax (2)^{2}+15+x^{2}}}+1\right )}{2}}}{x}\) | \(134\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.34, size = 73, normalized size = 3.04 \begin {gather*} \frac {{\left (x^{2} - 1\right )} e^{\left (e^{\left (e^{\left (x^{2} - 2 \, x \log \relax (2) + \log \relax (2)^{2} + 15\right )}\right )} \log \left (x + 1\right ) + e^{\left (e^{\left (x^{2} - 2 \, x \log \relax (2) + \log \relax (2)^{2} + 15\right )}\right )} \log \left (x - 1\right ) - e^{\left (e^{\left (x^{2} - 2 \, x \log \relax (2) + \log \relax (2)^{2} + 15\right )}\right )} \log \relax (x)\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.03, size = 37, normalized size = 1.54 \begin {gather*} \frac {{\left (x-\frac {1}{x}\right )}^{{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\ln \relax (2)}^2}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{15}}{2^{2\,x}}}}\,\left (x^2-1\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 8.93, size = 36, normalized size = 1.50 \begin {gather*} \frac {\left (x^{2} - 1\right ) e^{e^{e^{x^{2} - 2 x \log {\relax (2 )} + \log {\relax (2 )}^{2} + 15}} \log {\left (\frac {x^{2} - 1}{x} \right )}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________