Optimal. Leaf size=25 \[ (-3+x)^2-e^{-50+x-\frac {2 x}{1+x \log (5)}} x \]
________________________________________________________________________________________
Rubi [F] time = 4.58, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {2 (25+x+25 x \log (5))}{1+x \log (5)}} \left (e^x \left (-1+x+\left (-2 x-2 x^2\right ) \log (5)+\left (-x^2-x^3\right ) \log ^2(5)\right )+e^{\frac {2 (25+x+25 x \log (5))}{1+x \log (5)}} \left (-6+2 x+\left (-12 x+4 x^2\right ) \log (5)+\left (-6 x^2+2 x^3\right ) \log ^2(5)\right )\right )}{1+2 x \log (5)+x^2 \log ^2(5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {2 (25+x+25 x \log (5))}{1+x \log (5)}} \left (e^x \left (-1+x+\left (-2 x-2 x^2\right ) \log (5)+\left (-x^2-x^3\right ) \log ^2(5)\right )+e^{\frac {2 (25+x+25 x \log (5))}{1+x \log (5)}} \left (-6+2 x+\left (-12 x+4 x^2\right ) \log (5)+\left (-6 x^2+2 x^3\right ) \log ^2(5)\right )\right )}{(1+x \log (5))^2} \, dx\\ &=\int \frac {-6+2 x+4 (-3+x) x \log (5)+2 (-3+x) x^2 \log ^2(5)-e^{x-\frac {2 (25+x+25 x \log (5))}{1+x \log (5)}} \left (1+x^3 \log ^2(5)+x^2 \log (5) (2+\log (5))+x (-1+\log (25))\right )}{(1+x \log (5))^2} \, dx\\ &=\int \left (-\frac {6}{(1+x \log (5))^2}+\frac {2 x}{(1+x \log (5))^2}+\frac {4 (-3+x) x \log (5)}{(1+x \log (5))^2}+\frac {2 (-3+x) x^2 \log ^2(5)}{(1+x \log (5))^2}+\frac {5^{\frac {(-50+x) x}{1+x \log (5)}} e^{\frac {-50-x}{1+x \log (5)}} \left (-1-x^3 \log ^2(5)-x^2 \log (5) (2+\log (5))+x (1-\log (25))\right )}{(1+x \log (5))^2}\right ) \, dx\\ &=\frac {6}{\log (5) (1+x \log (5))}+2 \int \frac {x}{(1+x \log (5))^2} \, dx+(4 \log (5)) \int \frac {(-3+x) x}{(1+x \log (5))^2} \, dx+\left (2 \log ^2(5)\right ) \int \frac {(-3+x) x^2}{(1+x \log (5))^2} \, dx+\int \frac {5^{\frac {(-50+x) x}{1+x \log (5)}} e^{\frac {-50-x}{1+x \log (5)}} \left (-1-x^3 \log ^2(5)-x^2 \log (5) (2+\log (5))+x (1-\log (25))\right )}{(1+x \log (5))^2} \, dx\\ &=\frac {6}{\log (5) (1+x \log (5))}+2 \int \left (-\frac {1}{\log (5) (1+x \log (5))^2}+\frac {1}{\log (5) (1+x \log (5))}\right ) \, dx+(4 \log (5)) \int \left (\frac {1}{\log ^2(5)}+\frac {-2-\log (125)}{\log ^2(5) (1+x \log (5))}+\frac {1+\log (125)}{\log ^2(5) (1+x \log (5))^2}\right ) \, dx+\left (2 \log ^2(5)\right ) \int \left (\frac {x}{\log ^2(5)}+\frac {-1-3 \log (5)}{\log ^3(5) (1+x \log (5))^2}+\frac {3 (1+\log (25))}{\log ^3(5) (1+x \log (5))}+\frac {-2-\log (125)}{\log ^3(5)}\right ) \, dx+\int \left (-5^{\frac {(-50+x) x}{1+x \log (5)}} e^{\frac {-50-x}{1+x \log (5)}}-5^{\frac {(-50+x) x}{1+x \log (5)}} e^{\frac {-50-x}{1+x \log (5)}} x-\frac {2\ 5^{\frac {(-50+x) x}{1+x \log (5)}} e^{\frac {-50-x}{1+x \log (5)}}}{\log (5) (1+x \log (5))^2}+\frac {2\ 5^{\frac {(-50+x) x}{1+x \log (5)}} e^{\frac {-50-x}{1+x \log (5)}}}{\log (5) (1+x \log (5))}\right ) \, dx\\ &=x^2+\frac {4 x}{\log (5)}+\frac {2}{\log ^2(5) (1+x \log (5))}+\frac {6}{\log (5) (1+x \log (5))}-\frac {2 (1+\log (125))}{\log ^2(5) (1+x \log (5))}-\frac {2 x (2+\log (125))}{\log (5)}+\frac {2 \log (1+x \log (5))}{\log ^2(5)}+\frac {6 (1+\log (25)) \log (1+x \log (5))}{\log ^2(5)}-\frac {4 (2+\log (125)) \log (1+x \log (5))}{\log ^2(5)}-\frac {2 \int \frac {5^{\frac {(-50+x) x}{1+x \log (5)}} e^{\frac {-50-x}{1+x \log (5)}}}{(1+x \log (5))^2} \, dx}{\log (5)}+\frac {2 \int \frac {5^{\frac {(-50+x) x}{1+x \log (5)}} e^{\frac {-50-x}{1+x \log (5)}}}{1+x \log (5)} \, dx}{\log (5)}-\int 5^{\frac {(-50+x) x}{1+x \log (5)}} e^{\frac {-50-x}{1+x \log (5)}} \, dx-\int 5^{\frac {(-50+x) x}{1+x \log (5)}} e^{\frac {-50-x}{1+x \log (5)}} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 29, normalized size = 1.16 \begin {gather*} x \left (-6-e^{x-\frac {2 (25+x+25 x \log (5))}{1+x \log (5)}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.78, size = 54, normalized size = 2.16 \begin {gather*} -{\left (x e^{x} - {\left (x^{2} - 6 \, x\right )} e^{\left (\frac {2 \, {\left (25 \, x \log \relax (5) + x + 25\right )}}{x \log \relax (5) + 1}\right )}\right )} e^{\left (-\frac {2 \, {\left (25 \, x \log \relax (5) + x + 25\right )}}{x \log \relax (5) + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.20, size = 38, normalized size = 1.52 \begin {gather*} {\left (x^{2} e^{50} - 6 \, x e^{50} - x e^{\left (\frac {x^{2} \log \relax (5) - x}{x \log \relax (5) + 1}\right )}\right )} e^{\left (-50\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.49, size = 37, normalized size = 1.48
method | result | size |
risch | \(x^{2}-6 x -x \,{\mathrm e}^{\frac {x^{2} \ln \relax (5)-50 x \ln \relax (5)-x -50}{x \ln \relax (5)+1}}\) | \(37\) |
norman | \(\frac {\left (x^{3} \ln \relax (5) {\mathrm e}^{\frac {50 x \ln \relax (5)+2 x +50}{x \ln \relax (5)+1}}-6 \,{\mathrm e}^{\frac {50 x \ln \relax (5)+2 x +50}{x \ln \relax (5)+1}} x +\left (-6 \ln \relax (5)+1\right ) x^{2} {\mathrm e}^{\frac {50 x \ln \relax (5)+2 x +50}{x \ln \relax (5)+1}}-{\mathrm e}^{x} x -x^{2} \ln \relax (5) {\mathrm e}^{x}\right ) {\mathrm e}^{-\frac {2 \left (25 x \ln \relax (5)+x +25\right )}{x \ln \relax (5)+1}}}{x \ln \relax (5)+1}\) | \(124\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.95, size = 225, normalized size = 9.00 \begin {gather*} {\left (\frac {2}{x \log \relax (5)^{5} + \log \relax (5)^{4}} + \frac {x^{2} \log \relax (5) - 4 \, x}{\log \relax (5)^{3}} + \frac {6 \, \log \left (x \log \relax (5) + 1\right )}{\log \relax (5)^{4}}\right )} \log \relax (5)^{2} + 6 \, {\left (\frac {1}{x \log \relax (5)^{4} + \log \relax (5)^{3}} - \frac {x}{\log \relax (5)^{2}} + \frac {2 \, \log \left (x \log \relax (5) + 1\right )}{\log \relax (5)^{3}}\right )} \log \relax (5)^{2} - x e^{\left (x + \frac {2}{x \log \relax (5)^{2} + \log \relax (5)} - \frac {2}{\log \relax (5)} - 50\right )} - 4 \, {\left (\frac {1}{x \log \relax (5)^{4} + \log \relax (5)^{3}} - \frac {x}{\log \relax (5)^{2}} + \frac {2 \, \log \left (x \log \relax (5) + 1\right )}{\log \relax (5)^{3}}\right )} \log \relax (5) - 12 \, {\left (\frac {1}{x \log \relax (5)^{3} + \log \relax (5)^{2}} + \frac {\log \left (x \log \relax (5) + 1\right )}{\log \relax (5)^{2}}\right )} \log \relax (5) + \frac {2}{x \log \relax (5)^{3} + \log \relax (5)^{2}} + \frac {6}{x \log \relax (5)^{2} + \log \relax (5)} + \frac {2 \, \log \left (x \log \relax (5) + 1\right )}{\log \relax (5)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{-\frac {2\,\left (x+25\,x\,\ln \relax (5)+25\right )}{x\,\ln \relax (5)+1}}\,\left ({\mathrm {e}}^{\frac {2\,\left (x+25\,x\,\ln \relax (5)+25\right )}{x\,\ln \relax (5)+1}}\,\left (\ln \relax (5)\,\left (12\,x-4\,x^2\right )-2\,x+{\ln \relax (5)}^2\,\left (6\,x^2-2\,x^3\right )+6\right )+{\mathrm {e}}^x\,\left (\ln \relax (5)\,\left (2\,x^2+2\,x\right )-x+{\ln \relax (5)}^2\,\left (x^3+x^2\right )+1\right )\right )}{{\ln \relax (5)}^2\,x^2+2\,\ln \relax (5)\,x+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 13.58, size = 31, normalized size = 1.24 \begin {gather*} x^{2} - x e^{x} e^{- \frac {2 \left (x + 25 x \log {\relax (5 )} + 25\right )}{x \log {\relax (5 )} + 1}} - 6 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________