Optimal. Leaf size=25 \[ \frac {4 \left (-2-x+\frac {1}{3} x^2 \left (e^x+x\right ) \log (2)\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24+12 x-4 e^x x^2 \log (2)-4 x^3 \log (2)+\left (-12 x+12 x^3 \log (2)+e^x \left (8 x^2+4 x^3\right ) \log (2)\right ) \log (x)}{3 x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {24+12 x-4 e^x x^2 \log (2)-4 x^3 \log (2)+\left (-12 x+12 x^3 \log (2)+e^x \left (8 x^2+4 x^3\right ) \log (2)\right ) \log (x)}{x \log ^2(x)} \, dx\\ &=\frac {1}{3} \int \left (\frac {4 e^x x \log (2) (-1+2 \log (x)+x \log (x))}{\log ^2(x)}+\frac {4 \left (6+3 x-x^3 \log (2)-3 x \log (x)+x^3 \log (8) \log (x)\right )}{x \log ^2(x)}\right ) \, dx\\ &=\frac {4}{3} \int \frac {6+3 x-x^3 \log (2)-3 x \log (x)+x^3 \log (8) \log (x)}{x \log ^2(x)} \, dx+\frac {1}{3} (4 \log (2)) \int \frac {e^x x (-1+2 \log (x)+x \log (x))}{\log ^2(x)} \, dx\\ &=\frac {4 e^x x^2 \log (2)}{3 \log (x)}+\frac {4}{3} \int \left (\frac {6+3 x-x^3 \log (2)}{x \log ^2(x)}+\frac {-3+x^2 \log (8)}{\log (x)}\right ) \, dx\\ &=\frac {4 e^x x^2 \log (2)}{3 \log (x)}+\frac {4}{3} \int \frac {6+3 x-x^3 \log (2)}{x \log ^2(x)} \, dx+\frac {4}{3} \int \frac {-3+x^2 \log (8)}{\log (x)} \, dx\\ &=\frac {4 e^x x^2 \log (2)}{3 \log (x)}+\frac {4}{3} \int \left (-\frac {3}{\log (x)}+\frac {x^2 \log (8)}{\log (x)}\right ) \, dx+\frac {4}{3} \int \frac {6+3 x-x^3 \log (2)}{x \log ^2(x)} \, dx\\ &=\frac {4 e^x x^2 \log (2)}{3 \log (x)}+\frac {4}{3} \int \frac {6+3 x-x^3 \log (2)}{x \log ^2(x)} \, dx-4 \int \frac {1}{\log (x)} \, dx+\frac {1}{3} (4 \log (8)) \int \frac {x^2}{\log (x)} \, dx\\ &=\frac {4 e^x x^2 \log (2)}{3 \log (x)}-4 \text {li}(x)+\frac {4}{3} \int \frac {6+3 x-x^3 \log (2)}{x \log ^2(x)} \, dx+\frac {1}{3} (4 \log (8)) \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {4}{3} \text {Ei}(3 \log (x)) \log (8)+\frac {4 e^x x^2 \log (2)}{3 \log (x)}-4 \text {li}(x)+\frac {4}{3} \int \frac {6+3 x-x^3 \log (2)}{x \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 28, normalized size = 1.12 \begin {gather*} \frac {4 \left (-6-3 x+e^x x^2 \log (2)+x^3 \log (2)\right )}{3 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 25, normalized size = 1.00 \begin {gather*} \frac {4 \, {\left (x^{3} \log \relax (2) + x^{2} e^{x} \log \relax (2) - 3 \, x - 6\right )}}{3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 25, normalized size = 1.00 \begin {gather*} \frac {4 \, {\left (x^{3} \log \relax (2) + x^{2} e^{x} \log \relax (2) - 3 \, x - 6\right )}}{3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.04
method | result | size |
risch | \(\frac {\frac {4 x^{3} \ln \relax (2)}{3}+\frac {4 x^{2} \ln \relax (2) {\mathrm e}^{x}}{3}-4 x -8}{\ln \relax (x )}\) | \(26\) |
default | \(\frac {4 x^{2} \ln \relax (2) {\mathrm e}^{x}}{3 \ln \relax (x )}+\frac {4 x^{3} \ln \relax (2)}{3 \ln \relax (x )}-\frac {4 x}{\ln \relax (x )}-\frac {8}{\ln \relax (x )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4 \, x^{2} e^{x} \log \relax (2)}{3 \, \log \relax (x)} - 4 \, \Gamma \left (-1, -3 \, \log \relax (x)\right ) \log \relax (2) - \frac {8}{\log \relax (x)} + 4 \, \Gamma \left (-1, -\log \relax (x)\right ) + \frac {4}{3} \, \int \frac {3 \, {\left (x^{2} \log \relax (2) - 1\right )}}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.86, size = 38, normalized size = 1.52 \begin {gather*} \frac {4\,x^3\,\ln \relax (2)}{3\,\ln \relax (x)}-\frac {8}{\ln \relax (x)}-\frac {4\,x}{\ln \relax (x)}+\frac {4\,x^2\,{\mathrm {e}}^x\,\ln \relax (2)}{3\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 34, normalized size = 1.36 \begin {gather*} \frac {4 x^{2} e^{x} \log {\relax (2 )}}{3 \log {\relax (x )}} + \frac {4 x^{3} \log {\relax (2 )} - 12 x - 24}{3 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________