Optimal. Leaf size=31 \[ \frac {x}{1+2 x-x \left (-e^{3 x}+\frac {\log (5)}{1+e-x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+e^2+e (2-2 x)-2 x+x^2+e^{3 x} \left (-3 x^2-3 e^2 x^2+6 x^3-3 x^4+e \left (-6 x^2+6 x^3\right )\right )+x^2 \log (5)}{1+2 x-3 x^2-4 x^3+4 x^4+e^2 \left (1+4 x+4 x^2\right )+e \left (2+6 x-8 x^3\right )+e^{6 x} \left (x^2+e^2 x^2-2 x^3+x^4+e \left (2 x^2-2 x^3\right )\right )+\left (-2 x-2 x^2+4 x^3+e \left (-2 x-4 x^2\right )\right ) \log (5)+x^2 \log ^2(5)+e^{3 x} \left (2 x-6 x^3+4 x^4+e^2 \left (2 x+4 x^2\right )+e \left (4 x+4 x^2-8 x^3\right )+\left (-2 x^2-2 e x^2+2 x^3\right ) \log (5)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+e^2+e (2-2 x)-2 x+e^{3 x} \left (-3 x^2-3 e^2 x^2+6 x^3-3 x^4+e \left (-6 x^2+6 x^3\right )\right )+x^2 (1+\log (5))}{1+2 x-3 x^2-4 x^3+4 x^4+e^2 \left (1+4 x+4 x^2\right )+e \left (2+6 x-8 x^3\right )+e^{6 x} \left (x^2+e^2 x^2-2 x^3+x^4+e \left (2 x^2-2 x^3\right )\right )+\left (-2 x-2 x^2+4 x^3+e \left (-2 x-4 x^2\right )\right ) \log (5)+x^2 \log ^2(5)+e^{3 x} \left (2 x-6 x^3+4 x^4+e^2 \left (2 x+4 x^2\right )+e \left (4 x+4 x^2-8 x^3\right )+\left (-2 x^2-2 e x^2+2 x^3\right ) \log (5)\right )} \, dx\\ &=\int \frac {1+e^2+e (2-2 x)-2 x+e^{3 x} \left (-3 x^2-3 e^2 x^2+6 x^3-3 x^4+e \left (-6 x^2+6 x^3\right )\right )+x^2 (1+\log (5))}{1+2 x-4 x^3+4 x^4+e^2 \left (1+4 x+4 x^2\right )+e \left (2+6 x-8 x^3\right )+e^{6 x} \left (x^2+e^2 x^2-2 x^3+x^4+e \left (2 x^2-2 x^3\right )\right )+\left (-2 x-2 x^2+4 x^3+e \left (-2 x-4 x^2\right )\right ) \log (5)+e^{3 x} \left (2 x-6 x^3+4 x^4+e^2 \left (2 x+4 x^2\right )+e \left (4 x+4 x^2-8 x^3\right )+\left (-2 x^2-2 e x^2+2 x^3\right ) \log (5)\right )+x^2 \left (-3+\log ^2(5)\right )} \, dx\\ &=\int \frac {1+e^2-2 e (-1+x)-2 x-3 e^{2+3 x} x^2+6 e^{1+3 x} (-1+x) x^2-3 e^{3 x} (-1+x)^2 x^2+x^2 (1+\log (5))}{\left (1+e+e^{1+3 x} x-e^{3 x} (-1+x) x-2 x^2+x (1+2 e-\log (5))\right )^2} \, dx\\ &=\int \left (\frac {3 x (-1-e+x)}{1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))}+\frac {(1+e)^2+(1+e) (1+3 e) x+6 x^4+x^2 \left (1+6 e^2+3 e (2-\log (5))-2 \log (5)\right )-3 x^3 (3+4 e-\log (5))}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2}\right ) \, dx\\ &=3 \int \frac {x (-1-e+x)}{1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))} \, dx+\int \frac {(1+e)^2+(1+e) (1+3 e) x+6 x^4+x^2 \left (1+6 e^2+3 e (2-\log (5))-2 \log (5)\right )-3 x^3 (3+4 e-\log (5))}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2} \, dx\\ &=3 \int \left (\frac {(-1-e) x}{1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))}+\frac {x^2}{1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))}\right ) \, dx+\int \left (\frac {(1+e)^2}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2}+\frac {(1+e) (1+3 e) x}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2}+\frac {6 x^4}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2}+\frac {x^2 \left (1+6 e^2+3 e (2-\log (5))-2 \log (5)\right )}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2}+\frac {3 x^3 (-3-4 e+\log (5))}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2}\right ) \, dx\\ &=3 \int \frac {x^2}{1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))} \, dx+6 \int \frac {x^4}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2} \, dx-(3 (1+e)) \int \frac {x}{1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))} \, dx+(1+e)^2 \int \frac {1}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2} \, dx+((1+e) (1+3 e)) \int \frac {x}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2} \, dx+\left (1+6 e^2+3 e (2-\log (5))-2 \log (5)\right ) \int \frac {x^2}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2} \, dx-(3 (3+4 e-\log (5))) \int \frac {x^3}{\left (1+e+e^{3 x} (1+e) x-2 x^2-e^{3 x} x^2+x (1+2 e-\log (5))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 48, normalized size = 1.55 \begin {gather*} \frac {(1+e-x) x}{1+e+x+2 e x+e^{1+3 x} x-e^{3 x} (-1+x) x-2 x^2-x \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 55, normalized size = 1.77 \begin {gather*} \frac {x^{2} - x e - x}{2 \, x^{2} - {\left (2 \, x + 1\right )} e + {\left (x^{2} - x e - x\right )} e^{\left (3 \, x\right )} + x \log \relax (5) - x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.13, size = 62, normalized size = 2.00 \begin {gather*} \frac {x^{2} - x e - x}{x^{2} e^{\left (3 \, x\right )} + 2 \, x^{2} - 2 \, x e - x e^{\left (3 \, x\right )} - x e^{\left (3 \, x + 1\right )} + x \log \relax (5) - x - e - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.72, size = 60, normalized size = 1.94
method | result | size |
risch | \(-\frac {\left ({\mathrm e}-x +1\right ) x}{-x \,{\mathrm e}^{3 x +1}+x^{2} {\mathrm e}^{3 x}+x \ln \relax (5)-2 x \,{\mathrm e}+2 x^{2}-x \,{\mathrm e}^{3 x}-{\mathrm e}-x -1}\) | \(60\) |
norman | \(\frac {x^{2}+\left (-{\mathrm e}-1\right ) x}{-{\mathrm e}^{3 x} {\mathrm e} x +x^{2} {\mathrm e}^{3 x}+x \ln \relax (5)-2 x \,{\mathrm e}+2 x^{2}-x \,{\mathrm e}^{3 x}-{\mathrm e}-x -1}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.97, size = 54, normalized size = 1.74 \begin {gather*} \frac {x^{2} - x {\left (e + 1\right )}}{2 \, x^{2} - x {\left (2 \, e - \log \relax (5) + 1\right )} + {\left (x^{2} - x {\left (e + 1\right )}\right )} e^{\left (3 \, x\right )} - e - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^2-2\,x+x^2\,\ln \relax (5)-{\mathrm {e}}^{3\,x}\,\left (\mathrm {e}\,\left (6\,x^2-6\,x^3\right )+3\,x^2\,{\mathrm {e}}^2+3\,x^2-6\,x^3+3\,x^4\right )+x^2-\mathrm {e}\,\left (2\,x-2\right )+1}{2\,x+x^2\,{\ln \relax (5)}^2+{\mathrm {e}}^{6\,x}\,\left (\mathrm {e}\,\left (2\,x^2-2\,x^3\right )+x^2\,{\mathrm {e}}^2+x^2-2\,x^3+x^4\right )+{\mathrm {e}}^{3\,x}\,\left (2\,x+{\mathrm {e}}^2\,\left (4\,x^2+2\,x\right )-\ln \relax (5)\,\left (2\,x^2\,\mathrm {e}+2\,x^2-2\,x^3\right )+\mathrm {e}\,\left (-8\,x^3+4\,x^2+4\,x\right )-6\,x^3+4\,x^4\right )+{\mathrm {e}}^2\,\left (4\,x^2+4\,x+1\right )+\mathrm {e}\,\left (-8\,x^3+6\,x+2\right )-\ln \relax (5)\,\left (2\,x+\mathrm {e}\,\left (4\,x^2+2\,x\right )+2\,x^2-4\,x^3\right )-3\,x^2-4\,x^3+4\,x^4+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.77, size = 48, normalized size = 1.55 \begin {gather*} \frac {x^{2} - e x - x}{2 x^{2} - 2 e x - x + x \log {\relax (5 )} + \left (x^{2} - e x - x\right ) e^{3 x} - e - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________