Optimal. Leaf size=28 \[ 4 e^{36+5 x^2 \left (x-\frac {(5-x) x}{4-x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-144+36 x+5 x^3}{-4+x}} \left (-240 x^2+40 x^3\right )}{16-8 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-144+36 x+5 x^3}{-4+x}} \left (-240 x^2+40 x^3\right )}{(-4+x)^2} \, dx\\ &=\int \frac {e^{\frac {-144+36 x+5 x^3}{-4+x}} x^2 (-240+40 x)}{(-4+x)^2} \, dx\\ &=\int \left (80 e^{\frac {-144+36 x+5 x^3}{-4+x}}-\frac {1280 e^{\frac {-144+36 x+5 x^3}{-4+x}}}{(-4+x)^2}+40 e^{\frac {-144+36 x+5 x^3}{-4+x}} x\right ) \, dx\\ &=40 \int e^{\frac {-144+36 x+5 x^3}{-4+x}} x \, dx+80 \int e^{\frac {-144+36 x+5 x^3}{-4+x}} \, dx-1280 \int \frac {e^{\frac {-144+36 x+5 x^3}{-4+x}}}{(-4+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 20, normalized size = 0.71 \begin {gather*} 4 e^{\frac {-144+36 x+5 x^3}{-4+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 19, normalized size = 0.68 \begin {gather*} 4 \, e^{\left (\frac {5 \, x^{3} + 36 \, x - 144}{x - 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.48, size = 29, normalized size = 1.04 \begin {gather*} 4 \, e^{\left (\frac {5 \, x^{3}}{x - 4} + \frac {36 \, x}{x - 4} - \frac {144}{x - 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.53, size = 20, normalized size = 0.71
method | result | size |
gosper | \(4 \,{\mathrm e}^{\frac {5 x^{3}+36 x -144}{x -4}}\) | \(20\) |
risch | \(4 \,{\mathrm e}^{\frac {5 x^{3}+36 x -144}{x -4}}\) | \(20\) |
norman | \(\frac {4 x \,{\mathrm e}^{\frac {5 x^{3}+36 x -144}{x -4}}-16 \,{\mathrm e}^{\frac {5 x^{3}+36 x -144}{x -4}}}{x -4}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 20, normalized size = 0.71 \begin {gather*} 4 \, e^{\left (5 \, x^{2} + 20 \, x + \frac {320}{x - 4} + 116\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.73, size = 19, normalized size = 0.68 \begin {gather*} 4\,{\mathrm {e}}^{\frac {5\,x^3+36\,x-144}{x-4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 15, normalized size = 0.54 \begin {gather*} 4 e^{\frac {5 x^{3} + 36 x - 144}{x - 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________