Optimal. Leaf size=19 \[ 5+x+\frac {2 \left (-5+\frac {\log (5)}{x}\right )}{2+\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.46, antiderivative size = 23, normalized size of antiderivative = 1.21, number of steps used = 12, number of rules used = 8, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {6688, 6742, 2353, 2302, 30, 2306, 2309, 2178} \begin {gather*} x-\frac {10}{\log (x)+2}+\frac {2 \log (5)}{x (\log (x)+2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2178
Rule 2302
Rule 2306
Rule 2309
Rule 2353
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x+4 x^2-6 \log (5)+\left (4 x^2-2 \log (5)\right ) \log (x)+x^2 \log ^2(x)}{x^2 (2+\log (x))^2} \, dx\\ &=\int \left (1+\frac {2 (5 x-\log (5))}{x^2 (2+\log (x))^2}-\frac {2 \log (5)}{x^2 (2+\log (x))}\right ) \, dx\\ &=x+2 \int \frac {5 x-\log (5)}{x^2 (2+\log (x))^2} \, dx-(2 \log (5)) \int \frac {1}{x^2 (2+\log (x))} \, dx\\ &=x+2 \int \left (\frac {5}{x (2+\log (x))^2}-\frac {\log (5)}{x^2 (2+\log (x))^2}\right ) \, dx-(2 \log (5)) \operatorname {Subst}\left (\int \frac {e^{-x}}{2+x} \, dx,x,\log (x)\right )\\ &=x-2 e^2 \text {Ei}(-2-\log (x)) \log (5)+10 \int \frac {1}{x (2+\log (x))^2} \, dx-(2 \log (5)) \int \frac {1}{x^2 (2+\log (x))^2} \, dx\\ &=x-2 e^2 \text {Ei}(-2-\log (x)) \log (5)+\frac {2 \log (5)}{x (2+\log (x))}+10 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,2+\log (x)\right )+(2 \log (5)) \int \frac {1}{x^2 (2+\log (x))} \, dx\\ &=x-2 e^2 \text {Ei}(-2-\log (x)) \log (5)-\frac {10}{2+\log (x)}+\frac {2 \log (5)}{x (2+\log (x))}+(2 \log (5)) \operatorname {Subst}\left (\int \frac {e^{-x}}{2+x} \, dx,x,\log (x)\right )\\ &=x-\frac {10}{2+\log (x)}+\frac {2 \log (5)}{x (2+\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 18, normalized size = 0.95 \begin {gather*} x+\frac {-10 x+\log (25)}{x (2+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 30, normalized size = 1.58 \begin {gather*} \frac {x^{2} \log \relax (x) + 2 \, x^{2} - 10 \, x + 2 \, \log \relax (5)}{x \log \relax (x) + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 22, normalized size = 1.16 \begin {gather*} x - \frac {2 \, {\left (5 \, x - \log \relax (5)\right )}}{x \log \relax (x) + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 20, normalized size = 1.05
method | result | size |
risch | \(x +\frac {2 \ln \relax (5)-10 x}{\left (\ln \relax (x )+2\right ) x}\) | \(20\) |
norman | \(\frac {x^{2} \ln \relax (x )-10 x +2 x^{2}+2 \ln \relax (5)}{\left (\ln \relax (x )+2\right ) x}\) | \(30\) |
default | \(\frac {x \ln \relax (x )+2 x -10}{\ln \relax (x )+2}+\frac {2 \ln \relax (5)}{x \left (\ln \relax (x )+2\right )}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 30, normalized size = 1.58 \begin {gather*} \frac {x^{2} \log \relax (x) + 2 \, x^{2} - 10 \, x + 2 \, \log \relax (5)}{x \log \relax (x) + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.79, size = 31, normalized size = 1.63 \begin {gather*} \frac {x^2+5\,x}{x}-\frac {10\,x-\ln \left (25\right )}{x\,\left (\ln \relax (x)+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 17, normalized size = 0.89 \begin {gather*} x + \frac {- 10 x + 2 \log {\relax (5 )}}{x \log {\relax (x )} + 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________