Optimal. Leaf size=28 \[ \frac {e^{1+x} (-9+x)}{3 \left (4+e^{\frac {1}{4} (-2+x)}\right ) x} \]
________________________________________________________________________________________
Rubi [F] time = 3.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (e^{1+\frac {1}{4} (-2+x)} \left (36-27 x+3 x^2\right )+e \left (144-144 x+16 x^2\right )\right )}{192 x^2+96 e^{\frac {1}{4} (-2+x)} x^2+12 e^{\frac {1}{2} (-2+x)} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{1+x} \left (e^{1+\frac {1}{4} (-2+x)} \left (36-27 x+3 x^2\right )+e \left (144-144 x+16 x^2\right )\right )}{12 \left (4 \sqrt {e}+e^{x/4}\right )^2 x^2} \, dx\\ &=\frac {1}{12} \int \frac {e^{1+x} \left (e^{1+\frac {1}{4} (-2+x)} \left (36-27 x+3 x^2\right )+e \left (144-144 x+16 x^2\right )\right )}{\left (4 \sqrt {e}+e^{x/4}\right )^2 x^2} \, dx\\ &=\frac {1}{12} \int \left (\frac {4 e^{2+x} (-9+x)}{\left (4 \sqrt {e}+e^{x/4}\right )^2 x}+\frac {3 e^{\frac {3}{2}+x} \left (12-9 x+x^2\right )}{\left (4 \sqrt {e}+e^{x/4}\right ) x^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^{\frac {3}{2}+x} \left (12-9 x+x^2\right )}{\left (4 \sqrt {e}+e^{x/4}\right ) x^2} \, dx+\frac {1}{3} \int \frac {e^{2+x} (-9+x)}{\left (4 \sqrt {e}+e^{x/4}\right )^2 x} \, dx\\ &=\frac {1}{4} \int \left (\frac {e^{\frac {3}{2}+x}}{4 \sqrt {e}+e^{x/4}}+\frac {12 e^{\frac {3}{2}+x}}{\left (4 \sqrt {e}+e^{x/4}\right ) x^2}-\frac {9 e^{\frac {3}{2}+x}}{\left (4 \sqrt {e}+e^{x/4}\right ) x}\right ) \, dx+\frac {1}{3} \int \left (\frac {e^{2+x}}{\left (4 \sqrt {e}+e^{x/4}\right )^2}-\frac {9 e^{2+x}}{\left (4 \sqrt {e}+e^{x/4}\right )^2 x}\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^{\frac {3}{2}+x}}{4 \sqrt {e}+e^{x/4}} \, dx+\frac {1}{3} \int \frac {e^{2+x}}{\left (4 \sqrt {e}+e^{x/4}\right )^2} \, dx-\frac {9}{4} \int \frac {e^{\frac {3}{2}+x}}{\left (4 \sqrt {e}+e^{x/4}\right ) x} \, dx+3 \int \frac {e^{\frac {3}{2}+x}}{\left (4 \sqrt {e}+e^{x/4}\right ) x^2} \, dx-3 \int \frac {e^{2+x}}{\left (4 \sqrt {e}+e^{x/4}\right )^2 x} \, dx\\ &=-\left (\frac {9}{4} \int \frac {e^{\frac {3}{2}+x}}{\left (4 \sqrt {e}+e^{x/4}\right ) x} \, dx\right )+3 \int \frac {e^{\frac {3}{2}+x}}{\left (4 \sqrt {e}+e^{x/4}\right ) x^2} \, dx-3 \int \frac {e^{2+x}}{\left (4 \sqrt {e}+e^{x/4}\right )^2 x} \, dx+e^{3/2} \operatorname {Subst}\left (\int \frac {x^3}{4 \sqrt {e}+x} \, dx,x,e^{x/4}\right )+\frac {1}{3} \left (4 e^2\right ) \operatorname {Subst}\left (\int \frac {x^3}{\left (4 \sqrt {e}+x\right )^2} \, dx,x,e^{x/4}\right )\\ &=-\left (\frac {9}{4} \int \frac {e^{\frac {3}{2}+x}}{\left (4 \sqrt {e}+e^{x/4}\right ) x} \, dx\right )+3 \int \frac {e^{\frac {3}{2}+x}}{\left (4 \sqrt {e}+e^{x/4}\right ) x^2} \, dx-3 \int \frac {e^{2+x}}{\left (4 \sqrt {e}+e^{x/4}\right )^2 x} \, dx+e^{3/2} \operatorname {Subst}\left (\int \left (16 e-4 \sqrt {e} x+x^2-\frac {64 e^{3/2}}{4 \sqrt {e}+x}\right ) \, dx,x,e^{x/4}\right )+\frac {1}{3} \left (4 e^2\right ) \operatorname {Subst}\left (\int \left (-8 \sqrt {e}+x-\frac {64 e^{3/2}}{\left (4 \sqrt {e}+x\right )^2}+\frac {48 e}{4 \sqrt {e}+x}\right ) \, dx,x,e^{x/4}\right )\\ &=\frac {16}{3} e^{\frac {5}{2}+\frac {x}{4}}-\frac {4}{3} e^{2+\frac {x}{2}}+\frac {1}{3} e^{\frac {3}{2}+\frac {3 x}{4}}+\frac {256 e^{7/2}}{3 \left (4 \sqrt {e}+e^{x/4}\right )}-\frac {9}{4} \int \frac {e^{\frac {3}{2}+x}}{\left (4 \sqrt {e}+e^{x/4}\right ) x} \, dx+3 \int \frac {e^{\frac {3}{2}+x}}{\left (4 \sqrt {e}+e^{x/4}\right ) x^2} \, dx-3 \int \frac {e^{2+x}}{\left (4 \sqrt {e}+e^{x/4}\right )^2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 55, normalized size = 1.96 \begin {gather*} \frac {e^{3/2} \left (e^x (-9+x)+256 e^2 x+64 e^{\frac {6+x}{4}} x\right )}{3 \left (4 \sqrt {e}+e^{x/4}\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 41, normalized size = 1.46 \begin {gather*} \frac {256 \, x e^{4} + {\left (x - 9\right )} e^{\left (x + 2\right )} + 64 \, x e^{\left (\frac {1}{4} \, x + \frac {7}{2}\right )}}{3 \, {\left (4 \, x e + x e^{\left (\frac {1}{4} \, x + \frac {1}{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 43, normalized size = 1.54 \begin {gather*} \frac {256 \, x e^{\frac {7}{2}} + x e^{\left (x + \frac {3}{2}\right )} + 64 \, x e^{\left (\frac {1}{4} \, x + 3\right )} - 9 \, e^{\left (x + \frac {3}{2}\right )}}{3 \, {\left (4 \, x e^{\frac {1}{2}} + x e^{\left (\frac {1}{4} \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 42, normalized size = 1.50
method | result | size |
norman | \(\frac {-3 \,{\mathrm e} \,{\mathrm e}^{\frac {1}{2}} {\mathrm e}^{x}+\frac {{\mathrm e} \,{\mathrm e}^{\frac {1}{2}} x \,{\mathrm e}^{x}}{3}}{x \left (4 \,{\mathrm e}^{\frac {1}{2}}+{\mathrm e}^{\frac {x}{4}}\right )}\) | \(42\) |
risch | \(\frac {192 \,{\mathrm e}^{3}}{x}+\frac {\left (x -9\right ) {\mathrm e}^{\frac {3}{2}+\frac {3 x}{4}}}{3 x}-\frac {4 \left (x -9\right ) {\mathrm e}^{2+\frac {x}{2}}}{3 x}+\frac {16 \left (x -9\right ) {\mathrm e}^{\frac {5}{2}+\frac {x}{4}}}{3 x}+\frac {256 \,{\mathrm e}^{3} \left (x -9\right )}{3 x \left (4+{\mathrm e}^{\frac {x}{4}-\frac {1}{2}}\right )}\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 45, normalized size = 1.61 \begin {gather*} \frac {256 \, x e^{4} + {\left (x e^{2} - 9 \, e^{2}\right )} e^{x} + 64 \, x e^{\left (\frac {1}{4} \, x + \frac {7}{2}\right )}}{3 \, {\left (4 \, x e + x e^{\left (\frac {1}{4} \, x + \frac {1}{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.63, size = 93, normalized size = 3.32 \begin {gather*} \frac {192\,{\mathrm {e}}^3}{x}-\frac {256\,\left (9\,x\,{\mathrm {e}}^{7/2}-x^2\,{\mathrm {e}}^{7/2}\right )}{3\,x^2\,\left ({\mathrm {e}}^{x/4}+4\,\sqrt {\mathrm {e}}\right )}-\frac {{\mathrm {e}}^{\frac {3\,x}{4}}\,\left (3\,{\mathrm {e}}^{3/2}-\frac {x\,{\mathrm {e}}^{3/2}}{3}\right )}{x}+\frac {{\mathrm {e}}^{x/2}\,\left (12\,{\mathrm {e}}^2-\frac {4\,x\,{\mathrm {e}}^2}{3}\right )}{x}-\frac {{\mathrm {e}}^{x/4}\,\left (48\,{\mathrm {e}}^{5/2}-\frac {16\,x\,{\mathrm {e}}^{5/2}}{3}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________