Optimal. Leaf size=26 \[ x \left (6+\frac {5 e^{-x}}{\left (4+e^{\frac {x}{\log (x)}}\right )^2}+12 x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{x+\frac {3 x}{\log (x)}} (6+24 x) \log ^2(x)+e^{x+\frac {2 x}{\log (x)}} (72+288 x) \log ^2(x)+\left (20-20 x+e^x (384+1536 x)\right ) \log ^2(x)+e^{\frac {x}{\log (x)}} \left (10 x-10 x \log (x)+\left (5-5 x+e^x (288+1152 x)\right ) \log ^2(x)\right )}{64 e^x \log ^2(x)+48 e^{x+\frac {x}{\log (x)}} \log ^2(x)+12 e^{x+\frac {2 x}{\log (x)}} \log ^2(x)+e^{x+\frac {3 x}{\log (x)}} \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (10 e^{\frac {x}{\log (x)}} x-10 e^{\frac {x}{\log (x)}} x \log (x)+\left (4+e^{\frac {x}{\log (x)}}\right ) \left (5-5 x+96 e^x (1+4 x)+48 e^{x+\frac {x}{\log (x)}} (1+4 x)+6 e^{x+\frac {2 x}{\log (x)}} (1+4 x)\right ) \log ^2(x)\right )}{\left (4+e^{\frac {x}{\log (x)}}\right )^3 \log ^2(x)} \, dx\\ &=\int \left (6 (1+4 x)+\frac {40 e^{-x} x (-1+\log (x))}{\left (4+e^{\frac {x}{\log (x)}}\right )^3 \log ^2(x)}-\frac {5 e^{-x} \left (-2 x+2 x \log (x)-\log ^2(x)+x \log ^2(x)\right )}{\left (4+e^{\frac {x}{\log (x)}}\right )^2 \log ^2(x)}\right ) \, dx\\ &=\frac {3}{4} (1+4 x)^2-5 \int \frac {e^{-x} \left (-2 x+2 x \log (x)-\log ^2(x)+x \log ^2(x)\right )}{\left (4+e^{\frac {x}{\log (x)}}\right )^2 \log ^2(x)} \, dx+40 \int \frac {e^{-x} x (-1+\log (x))}{\left (4+e^{\frac {x}{\log (x)}}\right )^3 \log ^2(x)} \, dx\\ &=\frac {3}{4} (1+4 x)^2-5 \int \left (-\frac {e^{-x}}{\left (4+e^{\frac {x}{\log (x)}}\right )^2}+\frac {e^{-x} x}{\left (4+e^{\frac {x}{\log (x)}}\right )^2}-\frac {2 e^{-x} x}{\left (4+e^{\frac {x}{\log (x)}}\right )^2 \log ^2(x)}+\frac {2 e^{-x} x}{\left (4+e^{\frac {x}{\log (x)}}\right )^2 \log (x)}\right ) \, dx+40 \int \left (-\frac {e^{-x} x}{\left (4+e^{\frac {x}{\log (x)}}\right )^3 \log ^2(x)}+\frac {e^{-x} x}{\left (4+e^{\frac {x}{\log (x)}}\right )^3 \log (x)}\right ) \, dx\\ &=\frac {3}{4} (1+4 x)^2+5 \int \frac {e^{-x}}{\left (4+e^{\frac {x}{\log (x)}}\right )^2} \, dx-5 \int \frac {e^{-x} x}{\left (4+e^{\frac {x}{\log (x)}}\right )^2} \, dx+10 \int \frac {e^{-x} x}{\left (4+e^{\frac {x}{\log (x)}}\right )^2 \log ^2(x)} \, dx-10 \int \frac {e^{-x} x}{\left (4+e^{\frac {x}{\log (x)}}\right )^2 \log (x)} \, dx-40 \int \frac {e^{-x} x}{\left (4+e^{\frac {x}{\log (x)}}\right )^3 \log ^2(x)} \, dx+40 \int \frac {e^{-x} x}{\left (4+e^{\frac {x}{\log (x)}}\right )^3 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 26, normalized size = 1.00 \begin {gather*} x \left (6+\frac {5 e^{-x}}{\left (4+e^{\frac {x}{\log (x)}}\right )^2}+12 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 103, normalized size = 3.96 \begin {gather*} \frac {96 \, {\left (2 \, x^{2} + x\right )} e^{\left (2 \, x\right )} + 48 \, {\left (2 \, x^{2} + x\right )} e^{\left (x + \frac {x \log \relax (x) + x}{\log \relax (x)}\right )} + 5 \, x e^{x} + 6 \, {\left (2 \, x^{2} + x\right )} e^{\left (\frac {2 \, {\left (x \log \relax (x) + x\right )}}{\log \relax (x)}\right )}}{16 \, e^{\left (2 \, x\right )} + 8 \, e^{\left (x + \frac {x \log \relax (x) + x}{\log \relax (x)}\right )} + e^{\left (\frac {2 \, {\left (x \log \relax (x) + x\right )}}{\log \relax (x)}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 212, normalized size = 8.15 \begin {gather*} \frac {12 \, x^{2} e^{\left (\frac {2 \, {\left (x \log \relax (x) + 2 \, x\right )}}{\log \relax (x)}\right )} + 96 \, x^{2} e^{\left (\frac {x \log \relax (x) + 2 \, x}{\log \relax (x)} + \frac {x \log \relax (x) + x}{\log \relax (x)}\right )} + 192 \, x^{2} e^{\left (\frac {2 \, {\left (x \log \relax (x) + x\right )}}{\log \relax (x)}\right )} + 6 \, x e^{\left (\frac {2 \, {\left (x \log \relax (x) + 2 \, x\right )}}{\log \relax (x)}\right )} + 48 \, x e^{\left (\frac {x \log \relax (x) + 2 \, x}{\log \relax (x)} + \frac {x \log \relax (x) + x}{\log \relax (x)}\right )} + 5 \, x e^{\left (\frac {x \log \relax (x) + 2 \, x}{\log \relax (x)}\right )} + 96 \, x e^{\left (\frac {2 \, {\left (x \log \relax (x) + x\right )}}{\log \relax (x)}\right )}}{e^{\left (\frac {2 \, {\left (x \log \relax (x) + 2 \, x\right )}}{\log \relax (x)}\right )} + 8 \, e^{\left (\frac {x \log \relax (x) + 2 \, x}{\log \relax (x)} + \frac {x \log \relax (x) + x}{\log \relax (x)}\right )} + 16 \, e^{\left (\frac {2 \, {\left (x \log \relax (x) + x\right )}}{\log \relax (x)}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 28, normalized size = 1.08
method | result | size |
risch | \(12 x^{2}+6 x +\frac {5 x \,{\mathrm e}^{-x}}{\left ({\mathrm e}^{\frac {x}{\ln \relax (x )}}+4\right )^{2}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 81, normalized size = 3.12 \begin {gather*} \frac {6 \, {\left (2 \, x^{2} + x\right )} e^{\left (x + \frac {2 \, x}{\log \relax (x)}\right )} + 48 \, {\left (2 \, x^{2} + x\right )} e^{\left (x + \frac {x}{\log \relax (x)}\right )} + 96 \, {\left (2 \, x^{2} + x\right )} e^{x} + 5 \, x}{e^{\left (x + \frac {2 \, x}{\log \relax (x)}\right )} + 8 \, e^{\left (x + \frac {x}{\log \relax (x)}\right )} + 16 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.98, size = 49, normalized size = 1.88 \begin {gather*} 6\,x+12\,x^2-\frac {5\,{\mathrm {e}}^{-x}\,\left (x-x\,\ln \relax (x)\right )}{\left (\ln \relax (x)-1\right )\,\left (8\,{\mathrm {e}}^{\frac {x}{\ln \relax (x)}}+{\mathrm {e}}^{\frac {2\,x}{\ln \relax (x)}}+16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 39, normalized size = 1.50 \begin {gather*} 12 x^{2} + 6 x + \frac {5 x}{e^{x} e^{\frac {2 x}{\log {\relax (x )}}} + 8 e^{x} e^{\frac {x}{\log {\relax (x )}}} + 16 e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________