Optimal. Leaf size=26 \[ 4 \left (\frac {e^3}{x}-x\right ) \left (x+\frac {(4+2 x)^2}{x^3}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 39, normalized size of antiderivative = 1.50, number of steps used = 2, number of rules used = 1, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {14} \begin {gather*} \frac {64 e^3}{x^4}+\frac {64 e^3}{x^3}-4 x^2-\frac {16 \left (4-e^3\right )}{x^2}-\frac {64}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {256 e^3}{x^5}-\frac {192 e^3}{x^4}-\frac {32 \left (-4+e^3\right )}{x^3}+\frac {64}{x^2}-8 x\right ) \, dx\\ &=\frac {64 e^3}{x^4}+\frac {64 e^3}{x^3}-\frac {16 \left (4-e^3\right )}{x^2}-\frac {64}{x}-4 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 28, normalized size = 1.08 \begin {gather*} -\frac {4 \left (-4 e^3 (2+x)^2+x^2 \left (16+16 x+x^4\right )\right )}{x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 31, normalized size = 1.19 \begin {gather*} -\frac {4 \, {\left (x^{6} + 16 \, x^{3} + 16 \, x^{2} - 4 \, {\left (x^{2} + 4 \, x + 4\right )} e^{3}\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 38, normalized size = 1.46 \begin {gather*} -4 \, x^{2} - \frac {16 \, {\left (4 \, x^{3} - x^{2} e^{3} + 4 \, x^{2} - 4 \, x e^{3} - 4 \, e^{3}\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 35, normalized size = 1.35
method | result | size |
norman | \(\frac {\left (16 \,{\mathrm e}^{3}-64\right ) x^{2}-64 x^{3}-4 x^{6}+64 x \,{\mathrm e}^{3}+64 \,{\mathrm e}^{3}}{x^{4}}\) | \(35\) |
risch | \(-4 x^{2}+\frac {-64 x^{3}+\left (16 \,{\mathrm e}^{3}-64\right ) x^{2}+64 x \,{\mathrm e}^{3}+64 \,{\mathrm e}^{3}}{x^{4}}\) | \(36\) |
default | \(-4 x^{2}+\frac {64 \,{\mathrm e}^{3}}{x^{3}}-\frac {4 \left (-4 \,{\mathrm e}^{3}+16\right )}{x^{2}}-\frac {64}{x}+\frac {64 \,{\mathrm e}^{3}}{x^{4}}\) | \(37\) |
gosper | \(\frac {-4 x^{6}+16 x^{2} {\mathrm e}^{3}-64 x^{3}+64 x \,{\mathrm e}^{3}-64 x^{2}+64 \,{\mathrm e}^{3}}{x^{4}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 35, normalized size = 1.35 \begin {gather*} -4 \, x^{2} - \frac {16 \, {\left (4 \, x^{3} - x^{2} {\left (e^{3} - 4\right )} - 4 \, x e^{3} - 4 \, e^{3}\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.67, size = 35, normalized size = 1.35 \begin {gather*} \frac {-64\,x^3+\left (16\,{\mathrm {e}}^3-64\right )\,x^2+64\,{\mathrm {e}}^3\,x+64\,{\mathrm {e}}^3}{x^4}-4\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 36, normalized size = 1.38 \begin {gather*} - 4 x^{2} - \frac {64 x^{3} + x^{2} \left (64 - 16 e^{3}\right ) - 64 x e^{3} - 64 e^{3}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________