Optimal. Leaf size=22 \[ x^2 \left (-2+4 x+e^x \left (-5+\frac {4}{x}+\log (x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 34, normalized size of antiderivative = 1.55, number of steps used = 13, number of rules used = 5, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {2196, 2194, 2176, 1593, 2554} \begin {gather*} 4 x^3-5 e^x x^2-2 x^2+e^x x^2 \log (x)+4 e^x x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-2 x^2+4 x^3+\int e^x \left (4-5 x-5 x^2\right ) \, dx+\int e^x \left (2 x+x^2\right ) \log (x) \, dx\\ &=-2 x^2+4 x^3+\int \left (4 e^x-5 e^x x-5 e^x x^2\right ) \, dx+\int e^x x (2+x) \log (x) \, dx\\ &=-2 x^2+4 x^3+e^x x^2 \log (x)+4 \int e^x \, dx-5 \int e^x x \, dx-5 \int e^x x^2 \, dx-\int e^x x \, dx\\ &=4 e^x-6 e^x x-2 x^2-5 e^x x^2+4 x^3+e^x x^2 \log (x)+5 \int e^x \, dx+10 \int e^x x \, dx+\int e^x \, dx\\ &=10 e^x+4 e^x x-2 x^2-5 e^x x^2+4 x^3+e^x x^2 \log (x)-10 \int e^x \, dx\\ &=4 e^x x-2 x^2-5 e^x x^2+4 x^3+e^x x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 27, normalized size = 1.23 \begin {gather*} x \left (e^x (4-5 x)+2 x (-1+2 x)+e^x x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 32, normalized size = 1.45 \begin {gather*} x^{2} e^{x} \log \relax (x) + 4 \, x^{3} - 2 \, x^{2} - {\left (5 \, x^{2} - 4 \, x\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 40, normalized size = 1.82 \begin {gather*} x^{2} e^{x} \log \relax (x) + 4 \, x^{3} - 2 \, x^{2} - {\left (5 \, x^{2} - 5 \, x + 1\right )} e^{x} - {\left (x - 1\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.45
method | result | size |
default | \(4 \,{\mathrm e}^{x} x -5 \,{\mathrm e}^{x} x^{2}+x^{2} {\mathrm e}^{x} \ln \relax (x )-2 x^{2}+4 x^{3}\) | \(32\) |
norman | \(4 \,{\mathrm e}^{x} x -5 \,{\mathrm e}^{x} x^{2}+x^{2} {\mathrm e}^{x} \ln \relax (x )-2 x^{2}+4 x^{3}\) | \(32\) |
risch | \(4 \,{\mathrm e}^{x} x -5 \,{\mathrm e}^{x} x^{2}+x^{2} {\mathrm e}^{x} \ln \relax (x )-2 x^{2}+4 x^{3}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 40, normalized size = 1.82 \begin {gather*} x^{2} e^{x} \log \relax (x) + 4 \, x^{3} - 2 \, x^{2} - {\left (5 \, x^{2} - 5 \, x + 1\right )} e^{x} - {\left (x - 1\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.73, size = 31, normalized size = 1.41 \begin {gather*} 4\,x\,{\mathrm {e}}^x-5\,x^2\,{\mathrm {e}}^x-2\,x^2+4\,x^3+x^2\,{\mathrm {e}}^x\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 27, normalized size = 1.23 \begin {gather*} 4 x^{3} - 2 x^{2} + \left (x^{2} \log {\relax (x )} - 5 x^{2} + 4 x\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________