Optimal. Leaf size=35 \[ \frac {1}{2} \left (5+\left (\frac {e^{e^{x^2}}-x}{\log (2)}+4 \log ^2\left (1+e^5\right )\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.12, antiderivative size = 96, normalized size of antiderivative = 2.74, number of steps used = 6, number of rules used = 5, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {12, 6715, 2282, 2194, 2288} \begin {gather*} \frac {x^2}{2 \log ^2(2)}+\frac {e^{2 e^{x^2}}}{2 \log ^2(2)}-\frac {e^{e^{x^2}-x^2} \left (e^{x^2} x^2-e^{x^2} x \log (16) \log ^2\left (1+e^5\right )\right )}{x \log ^2(2)}-\frac {x \log (16) \log ^2\left (1+e^5\right )}{\log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rule 2288
Rule 6715
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (x+2 e^{2 e^{x^2}+x^2} x-\log (2) \log ^2\left (1+2 e^5+e^{10}\right )+e^{e^{x^2}} \left (-1-2 e^{x^2} x^2+2 e^{x^2} x \log (2) \log ^2\left (1+2 e^5+e^{10}\right )\right )\right ) \, dx}{\log ^2(2)}\\ &=\frac {x^2}{2 \log ^2(2)}-\frac {x \log (16) \log ^2\left (1+e^5\right )}{\log ^2(2)}+\frac {\int e^{e^{x^2}} \left (-1-2 e^{x^2} x^2+2 e^{x^2} x \log (2) \log ^2\left (1+2 e^5+e^{10}\right )\right ) \, dx}{\log ^2(2)}+\frac {2 \int e^{2 e^{x^2}+x^2} x \, dx}{\log ^2(2)}\\ &=\frac {x^2}{2 \log ^2(2)}-\frac {x \log (16) \log ^2\left (1+e^5\right )}{\log ^2(2)}-\frac {e^{e^{x^2}-x^2} \left (e^{x^2} x^2-e^{x^2} x \log (16) \log ^2\left (1+e^5\right )\right )}{x \log ^2(2)}+\frac {\operatorname {Subst}\left (\int e^{2 e^x+x} \, dx,x,x^2\right )}{\log ^2(2)}\\ &=\frac {x^2}{2 \log ^2(2)}-\frac {x \log (16) \log ^2\left (1+e^5\right )}{\log ^2(2)}-\frac {e^{e^{x^2}-x^2} \left (e^{x^2} x^2-e^{x^2} x \log (16) \log ^2\left (1+e^5\right )\right )}{x \log ^2(2)}+\frac {\operatorname {Subst}\left (\int e^{2 x} \, dx,x,e^{x^2}\right )}{\log ^2(2)}\\ &=\frac {e^{2 e^{x^2}}}{2 \log ^2(2)}+\frac {x^2}{2 \log ^2(2)}-\frac {x \log (16) \log ^2\left (1+e^5\right )}{\log ^2(2)}-\frac {e^{e^{x^2}-x^2} \left (e^{x^2} x^2-e^{x^2} x \log (16) \log ^2\left (1+e^5\right )\right )}{x \log ^2(2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 32, normalized size = 0.91 \begin {gather*} \frac {\left (e^{e^{x^2}}-x+\log (16) \log ^2\left (1+e^5\right )\right )^2}{2 \log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 62, normalized size = 1.77 \begin {gather*} -\frac {2 \, x \log \relax (2) \log \left (e^{10} + 2 \, e^{5} + 1\right )^{2} - x^{2} - 2 \, {\left (\log \relax (2) \log \left (e^{10} + 2 \, e^{5} + 1\right )^{2} - x\right )} e^{\left (e^{\left (x^{2}\right )}\right )} - e^{\left (2 \, e^{\left (x^{2}\right )}\right )}}{2 \, \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 81, normalized size = 2.31 \begin {gather*} -\frac {2 \, x \log \relax (2) \log \left (e^{10} + 2 \, e^{5} + 1\right )^{2} - x^{2} - 2 \, {\left (e^{\left (x^{2} + e^{\left (x^{2}\right )}\right )} \log \relax (2) \log \left (e^{10} + 2 \, e^{5} + 1\right )^{2} - x e^{\left (x^{2} + e^{\left (x^{2}\right )}\right )}\right )} e^{\left (-x^{2}\right )} - e^{\left (2 \, e^{\left (x^{2}\right )}\right )}}{2 \, \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 63, normalized size = 1.80
method | result | size |
risch | \(-\frac {4 \ln \left ({\mathrm e}^{5}+1\right )^{2} x}{\ln \relax (2)}+\frac {x^{2}}{2 \ln \relax (2)^{2}}+\frac {{\mathrm e}^{2 \,{\mathrm e}^{x^{2}}}}{2 \ln \relax (2)^{2}}+\frac {\left (4 \ln \relax (2) \ln \left ({\mathrm e}^{5}+1\right )^{2}-x \right ) {\mathrm e}^{{\mathrm e}^{x^{2}}}}{\ln \relax (2)^{2}}\) | \(63\) |
default | \(\frac {\frac {x^{2}}{2}+\ln \relax (2) \ln \left ({\mathrm e}^{10}+2 \,{\mathrm e}^{5}+1\right )^{2} {\mathrm e}^{{\mathrm e}^{x^{2}}}-{\mathrm e}^{{\mathrm e}^{x^{2}}} x -\ln \relax (2) \ln \left ({\mathrm e}^{10}+2 \,{\mathrm e}^{5}+1\right )^{2} x +\frac {{\mathrm e}^{2 \,{\mathrm e}^{x^{2}}}}{2}}{\ln \relax (2)^{2}}\) | \(68\) |
norman | \(\frac {\ln \left ({\mathrm e}^{10}+2 \,{\mathrm e}^{5}+1\right )^{2} {\mathrm e}^{{\mathrm e}^{x^{2}}}+\frac {x^{2}}{2 \ln \relax (2)}+\frac {{\mathrm e}^{2 \,{\mathrm e}^{x^{2}}}}{2 \ln \relax (2)}-\ln \left ({\mathrm e}^{10}+2 \,{\mathrm e}^{5}+1\right )^{2} x -\frac {x \,{\mathrm e}^{{\mathrm e}^{x^{2}}}}{\ln \relax (2)}}{\ln \relax (2)}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 99, normalized size = 2.83 \begin {gather*} -\frac {2 \, x \log \relax (2) \log \left (e^{10} + 2 \, e^{5} + 1\right )^{2} - x^{2} - 2 \, {\left (4 \, {\left (\log \left (e^{4} - e^{3} + e^{2} - e + 1\right )^{2} + 2 \, \log \left (e^{4} - e^{3} + e^{2} - e + 1\right ) \log \left (e + 1\right ) + \log \left (e + 1\right )^{2}\right )} \log \relax (2) - x\right )} e^{\left (e^{\left (x^{2}\right )}\right )} - e^{\left (2 \, e^{\left (x^{2}\right )}\right )}}{2 \, \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.72, size = 39, normalized size = 1.11 \begin {gather*} -\frac {\left (x-{\mathrm {e}}^{{\mathrm {e}}^{x^2}}\right )\,\left ({\mathrm {e}}^{{\mathrm {e}}^{x^2}}-x+2\,\ln \relax (2)\,{\ln \left (2\,{\mathrm {e}}^5+{\mathrm {e}}^{10}+1\right )}^2\right )}{2\,{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.31, size = 83, normalized size = 2.37 \begin {gather*} \frac {x^{2}}{2 \log {\relax (2 )}^{2}} - \frac {x \log {\left (1 + 2 e^{5} + e^{10} \right )}^{2}}{\log {\relax (2 )}} + \frac {\left (- 2 x \log {\relax (2 )}^{2} + 2 \log {\relax (2 )}^{3} \log {\left (1 + 2 e^{5} + e^{10} \right )}^{2}\right ) e^{e^{x^{2}}} + e^{2 e^{x^{2}}} \log {\relax (2 )}^{2}}{2 \log {\relax (2 )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________