Optimal. Leaf size=30 \[ \log \left (-4+e^{4-3 x^2}-\frac {5+\frac {5}{e^3}}{15 \left (-1+e^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.13, antiderivative size = 69, normalized size of antiderivative = 2.30, number of steps used = 3, number of rules used = 3, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.058, Rules used = {6, 12, 6684} \begin {gather*} \log \left (e^{-3 x^2} \left (e^{3 x^2}-e^{3 x^2+1}+e^{3 x^2+2}-12 e^{3 x^2+3}+12 e^{3 x^2+4}+3 (1-e) e^7\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{7-3 x^2} \left (18-18 e^2\right ) x}{-1+e^3 \left (11-12 e^2\right )+e^{7-3 x^2} \left (-3+3 e^2\right )} \, dx\\ &=\left (18 \left (1-e^2\right )\right ) \int \frac {e^{7-3 x^2} x}{-1+e^3 \left (11-12 e^2\right )+e^{7-3 x^2} \left (-3+3 e^2\right )} \, dx\\ &=\log \left (e^{-3 x^2} \left (3 (1-e) e^7+e^{3 x^2}-e^{1+3 x^2}+e^{2+3 x^2}-12 e^{3+3 x^2}+12 e^{4+3 x^2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 41, normalized size = 1.37 \begin {gather*} \log \left (1-e+e^2-12 e^3+12 e^4+3 e^{7-3 x^2}-3 e^{8-3 x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 31, normalized size = 1.03 \begin {gather*} \log \left (3 \, {\left (e - 1\right )} e^{\left (-3 \, x^{2} + 7\right )} - 12 \, e^{4} + 12 \, e^{3} - e^{2} + e - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 32, normalized size = 1.07 \begin {gather*} \log \left ({\left | -12 \, e^{5} + 11 \, e^{3} + 3 \, e^{\left (-3 \, x^{2} + 9\right )} - 3 \, e^{\left (-3 \, x^{2} + 7\right )} - 1 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 39, normalized size = 1.30
method | result | size |
risch | \(-4+\ln \left ({\mathrm e}^{-3 x^{2}+4}-\frac {\left (12 \,{\mathrm e}^{4}-12 \,{\mathrm e}^{3}+{\mathrm e}^{2}-{\mathrm e}+1\right ) {\mathrm e}^{-3}}{3 \left ({\mathrm e}-1\right )}\right )\) | \(39\) |
norman | \(\ln \left (3 \,{\mathrm e}^{3} {\mathrm e}^{-3 x^{2}+4} {\mathrm e}^{2}-12 \,{\mathrm e}^{2} {\mathrm e}^{3}-3 \,{\mathrm e}^{3} {\mathrm e}^{-3 x^{2}+4}+11 \,{\mathrm e}^{3}-1\right )\) | \(40\) |
default | \(18 \,{\mathrm e}^{3} \left (\frac {{\mathrm e}^{4} \ln \left ({\mathrm e}^{x^{2}}\right )}{6 \,{\mathrm e}^{9}-6 \,{\mathrm e}^{7}}-\frac {{\mathrm e}^{4} \ln \left (12 \,{\mathrm e}^{3 x^{2}} {\mathrm e}^{5}-11 \,{\mathrm e}^{3} {\mathrm e}^{3 x^{2}}+{\mathrm e}^{3 x^{2}}-3 \,{\mathrm e}^{9}+3 \,{\mathrm e}^{7}\right )}{6 \left (3 \,{\mathrm e}^{9}-3 \,{\mathrm e}^{7}\right )}-\frac {{\mathrm e}^{2} {\mathrm e}^{4} \ln \left ({\mathrm e}^{x^{2}}\right )}{2 \left (3 \,{\mathrm e}^{9}-3 \,{\mathrm e}^{7}\right )}+\frac {{\mathrm e}^{2} {\mathrm e}^{4} \ln \left (12 \,{\mathrm e}^{3 x^{2}} {\mathrm e}^{5}-11 \,{\mathrm e}^{3} {\mathrm e}^{3 x^{2}}+{\mathrm e}^{3 x^{2}}-3 \,{\mathrm e}^{9}+3 \,{\mathrm e}^{7}\right )}{18 \,{\mathrm e}^{9}-18 \,{\mathrm e}^{7}}\right )\) | \(152\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 80, normalized size = 2.67 \begin {gather*} \frac {e^{2} \log \left (12 \, e^{5} - 11 \, e^{3} - 3 \, e^{\left (-3 \, x^{2} + 9\right )} + 3 \, e^{\left (-3 \, x^{2} + 7\right )} + 1\right )}{e^{2} - 1} - \frac {\log \left (12 \, e^{5} - 11 \, e^{3} - 3 \, e^{\left (-3 \, x^{2} + 9\right )} + 3 \, e^{\left (-3 \, x^{2} + 7\right )} + 1\right )}{e^{2} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.46, size = 37, normalized size = 1.23 \begin {gather*} \ln \left ({\mathrm {e}}^2-\mathrm {e}-12\,{\mathrm {e}}^3+12\,{\mathrm {e}}^4+3\,{\mathrm {e}}^{7-3\,x^2}-3\,{\mathrm {e}}^{8-3\,x^2}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 37, normalized size = 1.23 \begin {gather*} \log {\left (e^{4 - 3 x^{2}} + \frac {- 12 e^{4} - e^{2} - 1 + e + 12 e^{3}}{- 3 e^{3} + 3 e^{4}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________