Optimal. Leaf size=14 \[ \frac {8 x}{81+\left (e^4+x\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {1680, 12, 1814, 8} \begin {gather*} \frac {8 x}{\left (x+e^4\right )^2+81} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {8 \left (81+2 e^4 x-x^2\right )}{\left (81+x^2\right )^2} \, dx,x,e^4+x\right )\\ &=8 \operatorname {Subst}\left (\int \frac {81+2 e^4 x-x^2}{\left (81+x^2\right )^2} \, dx,x,e^4+x\right )\\ &=\frac {8 x}{81+\left (e^4+x\right )^2}-\frac {4}{81} \operatorname {Subst}\left (\int 0 \, dx,x,e^4+x\right )\\ &=\frac {8 x}{81+\left (e^4+x\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 1.36 \begin {gather*} \frac {8 x}{81+e^8+2 e^4 x+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 17, normalized size = 1.21 \begin {gather*} \frac {8 \, x}{x^{2} + 2 \, x e^{4} + e^{8} + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {8 \, {\left (x^{2} - e^{8} - 81\right )}}{x^{4} + 162 \, x^{2} + 4 \, x e^{12} + 6 \, {\left (x^{2} + 27\right )} e^{8} + 4 \, {\left (x^{3} + 81 \, x\right )} e^{4} + e^{16} + 6561}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 18, normalized size = 1.29
method | result | size |
risch | \(\frac {8 x}{{\mathrm e}^{8}+2 x \,{\mathrm e}^{4}+x^{2}+81}\) | \(18\) |
gosper | \(\frac {8 x}{{\mathrm e}^{8}+2 x \,{\mathrm e}^{4}+x^{2}+81}\) | \(20\) |
norman | \(\frac {8 x}{{\mathrm e}^{8}+2 x \,{\mathrm e}^{4}+x^{2}+81}\) | \(20\) |
default | \(2 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+4 \textit {\_Z}^{3} {\mathrm e}^{4}+\left (6 \,{\mathrm e}^{8}+162\right ) \textit {\_Z}^{2}+\left (4 \,{\mathrm e}^{12}+324 \,{\mathrm e}^{4}\right ) \textit {\_Z} +{\mathrm e}^{16}+6561+162 \,{\mathrm e}^{8}\right )}{\sum }\frac {\left ({\mathrm e}^{8}-\textit {\_R}^{2}+81\right ) \ln \left (x -\textit {\_R} \right )}{{\mathrm e}^{12}+3 \textit {\_R} \,{\mathrm e}^{8}+3 \textit {\_R}^{2} {\mathrm e}^{4}+\textit {\_R}^{3}+81 \,{\mathrm e}^{4}+81 \textit {\_R}}\right )\) | \(89\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 17, normalized size = 1.21 \begin {gather*} \frac {8 \, x}{x^{2} + 2 \, x e^{4} + e^{8} + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 17, normalized size = 1.21 \begin {gather*} \frac {8\,x}{x^2+2\,{\mathrm {e}}^4\,x+{\mathrm {e}}^8+81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 17, normalized size = 1.21 \begin {gather*} \frac {8 x}{x^{2} + 2 x e^{4} + 81 + e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________