Optimal. Leaf size=25 \[ \log \left (2 e^{x \left (3+\log ^4\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (3+\left (-8+4 x^2\right ) \log ^3\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right )+\log ^4\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=3 x+\int \left (-8+4 x^2\right ) \log ^3\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right ) \, dx+\int \log ^4\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right ) \, dx\\ &=3 x+\int \log ^4\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right ) \, dx+\int \left (-8 \log ^3\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right )+4 x^2 \log ^3\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right )\right ) \, dx\\ &=3 x+4 \int x^2 \log ^3\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right ) \, dx-8 \int \log ^3\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right ) \, dx+\int \log ^4\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 0.80 \begin {gather*} x \left (3+\log ^4\left (\frac {e^{\frac {x^2}{2}}}{x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 19, normalized size = 0.76 \begin {gather*} x \log \left (\frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2}}\right )^{4} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.29, size = 231, normalized size = 9.24 \begin {gather*} -\frac {17}{210} \, x^{9} + \frac {8}{35} \, x^{7} \log \left (\frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2}}\right ) + \frac {59}{75} \, x^{7} - \frac {4}{5} \, x^{5} \log \left (\frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2}}\right )^{2} - \frac {368}{75} \, x^{5} \log \left (\frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2}}\right ) + \frac {44}{9} \, x^{5} + \frac {32}{3} \, x^{3} \log \left (\frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2}}\right )^{2} + x \log \left (\frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2}}\right )^{4} + \frac {4}{3} \, {\left (x^{3} - 6 \, x\right )} \log \left (x^{2}\right )^{3} + \frac {128}{9} \, x^{3} \log \left (\frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2}}\right ) + \frac {4}{3} \, {\left (x^{3} - 6 \, x\right )} \log \left (\frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2}}\right )^{3} - \frac {2}{15} \, {\left (9 \, x^{5} - 10 \, x^{3} - 360 \, x\right )} \log \left (x^{2}\right )^{2} - 48 \, x \log \left (\frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2}}\right )^{2} + \frac {1}{1575} \, {\left (675 \, x^{7} - 378 \, x^{5} - 2800 \, x^{3} - 302400 \, x\right )} \log \left (x^{2}\right ) - 32 \, {\left (x^{3} - 6 \, x\right )} \log \left (x^{2}\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.65, size = 323, normalized size = 12.92
method | result | size |
default | \(3 x +\frac {x^{9}}{16}-x^{7} \ln \relax (x )-16 x^{3} \ln \relax (x )^{3}+16 x \ln \relax (x )^{4}+\frac {\left (\ln \left (\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}}\right )-\frac {x^{2}}{2}+2 \ln \relax (x )\right ) x^{7}}{2}+\left (\ln \left (\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}}\right )-\frac {x^{2}}{2}+2 \ln \relax (x )\right )^{4} x +\frac {3 \left (\ln \left (\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}}\right )-\frac {x^{2}}{2}+2 \ln \relax (x )\right )^{2} x^{5}}{2}+2 \left (\ln \left (\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}}\right )-\frac {x^{2}}{2}+2 \ln \relax (x )\right )^{3} x^{3}+6 x^{5} \ln \relax (x )^{2}+24 \left (\ln \left (\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}}\right )-\frac {x^{2}}{2}+2 \ln \relax (x )\right ) x^{3} \ln \relax (x )^{2}-12 \left (\ln \left (\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}}\right )-\frac {x^{2}}{2}+2 \ln \relax (x )\right )^{2} x^{3} \ln \relax (x )+24 \ln \relax (x )^{2} x \left (\ln \left (\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}}\right )-\frac {x^{2}}{2}+2 \ln \relax (x )\right )^{2}-6 \left (\ln \left (\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}}\right )-\frac {x^{2}}{2}+2 \ln \relax (x )\right ) x^{5} \ln \relax (x )-8 \ln \relax (x ) x \left (\ln \left (\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}}\right )-\frac {x^{2}}{2}+2 \ln \relax (x )\right )^{3}-32 \ln \relax (x )^{3} x \left (\ln \left (\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}}\right )-\frac {x^{2}}{2}+2 \ln \relax (x )\right )\) | \(323\) |
risch | \(\text {Expression too large to display}\) | \(17452\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 19, normalized size = 0.76 \begin {gather*} x \log \left (\frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2}}\right )^{4} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.40, size = 17, normalized size = 0.68 \begin {gather*} x\,\left ({\ln \left (\frac {{\mathrm {e}}^{\frac {x^2}{2}}}{x^2}\right )}^4+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 17, normalized size = 0.68 \begin {gather*} x \log {\left (\frac {e^{\frac {x^{2}}{2}}}{x^{2}} \right )}^{4} + 3 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________