Optimal. Leaf size=26 \[ -7 x-e^{2-e^x} x+\frac {3 x}{-4+x}+\log (2) \]
________________________________________________________________________________________
Rubi [F] time = 0.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^x} \left (e^{e^x} \left (-124+56 x-7 x^2\right )+e^2 \left (-16+8 x-x^2\right )+e^{2+x} \left (16 x-8 x^2+x^3\right )\right )}{16-8 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-e^x} \left (e^{e^x} \left (-124+56 x-7 x^2\right )+e^2 \left (-16+8 x-x^2\right )+e^{2+x} \left (16 x-8 x^2+x^3\right )\right )}{(-4+x)^2} \, dx\\ &=\int \left (-e^{2-e^x}+e^{2-e^x+x} x+\frac {-124+56 x-7 x^2}{(-4+x)^2}\right ) \, dx\\ &=-\int e^{2-e^x} \, dx+\int e^{2-e^x+x} x \, dx+\int \frac {-124+56 x-7 x^2}{(-4+x)^2} \, dx\\ &=\int \left (-7-\frac {12}{(-4+x)^2}\right ) \, dx+\int e^{2-e^x+x} x \, dx-\operatorname {Subst}\left (\int \frac {e^{2-x}}{x} \, dx,x,e^x\right )\\ &=-\frac {12}{4-x}-7 x-e^2 \text {Ei}\left (-e^x\right )+\int e^{2-e^x+x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 25, normalized size = 0.96 \begin {gather*} \frac {12}{-4+x}-7 (-4+x)-e^{2-e^x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 37, normalized size = 1.42 \begin {gather*} -\frac {{\left ({\left (x^{2} - 4 \, x\right )} e^{2} + {\left (7 \, x^{2} - 28 \, x - 12\right )} e^{\left (e^{x}\right )}\right )} e^{\left (-e^{x}\right )}}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 53, normalized size = 2.04 \begin {gather*} -\frac {x^{2} e^{\left (x - e^{x} + 2\right )} + 7 \, x^{2} e^{x} - 4 \, x e^{\left (x - e^{x} + 2\right )} - 28 \, x e^{x} - 12 \, e^{x}}{x e^{x} - 4 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 22, normalized size = 0.85
method | result | size |
risch | \(-7 x +\frac {12}{x -4}-x \,{\mathrm e}^{-{\mathrm e}^{x}+2}\) | \(22\) |
norman | \(\frac {\left (124 \,{\mathrm e}^{{\mathrm e}^{x}}-x^{2} {\mathrm e}^{2}+4 \,{\mathrm e}^{2} x -7 \,{\mathrm e}^{{\mathrm e}^{x}} x^{2}\right ) {\mathrm e}^{-{\mathrm e}^{x}}}{x -4}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 35, normalized size = 1.35 \begin {gather*} -\frac {7 \, x^{2} + {\left (x^{2} e^{2} - 4 \, x e^{2}\right )} e^{\left (-e^{x}\right )} - 28 \, x - 12}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.83, size = 45, normalized size = 1.73 \begin {gather*} \frac {31\,x-7\,x^2}{x-4}-\frac {4\,x\,{\mathrm {e}}^2-x^2\,{\mathrm {e}}^2}{4\,{\mathrm {e}}^{{\mathrm {e}}^x}-x\,{\mathrm {e}}^{{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 17, normalized size = 0.65 \begin {gather*} - 7 x - x e^{2} e^{- e^{x}} + \frac {12}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________