Optimal. Leaf size=24 \[ \log \left (x-x^2 \left (4-\frac {3}{2+x}+\log (x)\right )+x \log (\log (2))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4-20 x-32 x^2-9 x^3+\left (-8 x-8 x^2-2 x^3\right ) \log (x)+\left (4+4 x+x^2\right ) \log (\log (2))}{4 x-6 x^2-12 x^3-4 x^4+\left (-4 x^2-4 x^3-x^4\right ) \log (x)+\left (4 x+4 x^2+x^3\right ) \log (\log (2))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+20 x+32 x^2+9 x^3-\left (-8 x-8 x^2-2 x^3\right ) \log (x)-\left (4+4 x+x^2\right ) \log (\log (2))}{x (2+x) \left (4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))\right )} \, dx\\ &=\int \left (\frac {2}{x}+\frac {x^3+4 (1+\log (\log (2)))+4 x (2+\log (\log (2)))+x^2 (8+\log (\log (2)))}{x (2+x) \left (4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))\right )}\right ) \, dx\\ &=2 \log (x)+\int \frac {x^3+4 (1+\log (\log (2)))+4 x (2+\log (\log (2)))+x^2 (8+\log (\log (2)))}{x (2+x) \left (4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))\right )} \, dx\\ &=2 \log (x)+\int \left (\frac {6}{(-2-x) \left (4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))\right )}+\frac {x}{4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))}+\frac {6 \left (1+\frac {1}{6} \log (\log (2))\right )}{4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))}+\frac {2 (1+\log (\log (2)))}{x \left (4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))\right )}\right ) \, dx\\ &=2 \log (x)+6 \int \frac {1}{(-2-x) \left (4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))\right )} \, dx+(2 (1+\log (\log (2)))) \int \frac {1}{x \left (4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))\right )} \, dx+(6+\log (\log (2))) \int \frac {1}{4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))} \, dx+\int \frac {x}{4 x^2+2 x \log (x)+x^2 \log (x)+4 x \left (1-\frac {1}{4} \log (\log (2))\right )-2 (1+\log (\log (2)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 46, normalized size = 1.92 \begin {gather*} 2 \log (x)-\log (x (2+x))+\log \left (2-4 x-4 x^2-2 x \log (x)-x^2 \log (x)+2 \log (\log (2))+x \log (\log (2))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 44, normalized size = 1.83 \begin {gather*} 2 \, \log \relax (x) + \log \left (\frac {4 \, x^{2} + {\left (x^{2} + 2 \, x\right )} \log \relax (x) - {\left (x + 2\right )} \log \left (\log \relax (2)\right ) + 4 \, x - 2}{x^{2} + 2 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 42, normalized size = 1.75 \begin {gather*} \log \left (-x^{2} \log \relax (x) - 4 \, x^{2} - 2 \, x \log \relax (x) + x \log \left (\log \relax (2)\right ) - 4 \, x + 2 \, \log \left (\log \relax (2)\right ) + 2\right ) - \log \left (x + 2\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 40, normalized size = 1.67
method | result | size |
risch | \(2 \ln \relax (x )+\ln \left (\ln \relax (x )-\frac {x \ln \left (\ln \relax (2)\right )-4 x^{2}+2 \ln \left (\ln \relax (2)\right )-4 x +2}{x \left (2+x \right )}\right )\) | \(40\) |
norman | \(\ln \relax (x )-\ln \left (2+x \right )+\ln \left (-x^{2} \ln \relax (x )+x \ln \left (\ln \relax (2)\right )-4 x^{2}-2 x \ln \relax (x )+2 \ln \left (\ln \relax (2)\right )-4 x +2\right )\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 46, normalized size = 1.92 \begin {gather*} 2 \, \log \relax (x) + \log \left (\frac {4 \, x^{2} - x {\left (\log \left (\log \relax (2)\right ) - 4\right )} + {\left (x^{2} + 2 \, x\right )} \log \relax (x) - 2 \, \log \left (\log \relax (2)\right ) - 2}{x^{2} + 2 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {20\,x-\ln \left (\ln \relax (2)\right )\,\left (x^2+4\,x+4\right )+32\,x^2+9\,x^3+\ln \relax (x)\,\left (2\,x^3+8\,x^2+8\,x\right )-4}{6\,x^2-\ln \left (\ln \relax (2)\right )\,\left (x^3+4\,x^2+4\,x\right )-4\,x+12\,x^3+4\,x^4+\ln \relax (x)\,\left (x^4+4\,x^3+4\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 39, normalized size = 1.62 \begin {gather*} 2 \log {\relax (x )} + \log {\left (\log {\relax (x )} + \frac {4 x^{2} - x \log {\left (\log {\relax (2 )} \right )} + 4 x - 2 - 2 \log {\left (\log {\relax (2 )} \right )}}{x^{2} + 2 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________