Optimal. Leaf size=25 \[ \frac {e^4 \left (3+\frac {16 x}{\log (2)}\right )^4}{5 x-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^4 \left (65536 x^4+49152 x^3 \log (2)+13824 x^2 \log ^2(2)+1728 x \log ^3(2)+81 \log ^4(2)\right ) \left (-16 x-240 x^2+(-3+15 x) \log (2)+64 x \log (x)\right )}{\log ^4(2) (5 x-\log (x)) \left (-80 x^3-15 x^2 \log (2)+\left (16 x^2+3 x \log (2)\right ) \log (x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^4 \int \frac {\left (65536 x^4+49152 x^3 \log (2)+13824 x^2 \log ^2(2)+1728 x \log ^3(2)+81 \log ^4(2)\right ) \left (-16 x-240 x^2+(-3+15 x) \log (2)+64 x \log (x)\right )}{(5 x-\log (x)) \left (-80 x^3-15 x^2 \log (2)+\left (16 x^2+3 x \log (2)\right ) \log (x)\right )} \, dx}{\log ^4(2)}\\ &=\frac {e^4 \int \frac {(16 x+\log (8))^3 \left (240 x^2+x (16-15 \log (2))+\log (8)-64 x \log (x)\right )}{x (5 x-\log (x))^2} \, dx}{\log ^4(2)}\\ &=\frac {e^4 \int \left (\frac {(16 x+\log (8))^3 \left (-80 x^2+x (16-15 \log (2))+\log (8)\right )}{x (5 x-\log (x))^2}+\frac {64 (16 x+\log (8))^3}{5 x-\log (x)}\right ) \, dx}{\log ^4(2)}\\ &=\frac {e^4 \int \frac {(16 x+\log (8))^3 \left (-80 x^2+x (16-15 \log (2))+\log (8)\right )}{x (5 x-\log (x))^2} \, dx}{\log ^4(2)}+\frac {\left (64 e^4\right ) \int \frac {(16 x+\log (8))^3}{5 x-\log (x)} \, dx}{\log ^4(2)}\\ &=\frac {e^4 \int \left (-\frac {327680 x^4}{(5 x-\log (x))^2}-\frac {(-64+15 \log (2)) \log ^3(8)}{(5 x-\log (x))^2}+\frac {\log ^4(8)}{x (5 x-\log (x))^2}-\frac {16 x \log ^2(8) (-96+45 \log (2)+5 \log (8))}{(5 x-\log (x))^2}-\frac {4096 x^3 (-16+15 \log (2)+15 \log (8))}{(5 x-\log (x))^2}-\frac {256 x^2 \log (8) (-64+45 \log (2)+15 \log (8))}{(5 x-\log (x))^2}\right ) \, dx}{\log ^4(2)}+\frac {\left (64 e^4\right ) \int \left (\frac {4096 x^3}{5 x-\log (x)}+\frac {768 x^2 \log (8)}{5 x-\log (x)}+\frac {48 x \log ^2(8)}{5 x-\log (x)}+\frac {\log ^3(8)}{5 x-\log (x)}\right ) \, dx}{\log ^4(2)}\\ &=\frac {\left (262144 e^4\right ) \int \frac {x^3}{5 x-\log (x)} \, dx}{\log ^4(2)}-\frac {\left (327680 e^4\right ) \int \frac {x^4}{(5 x-\log (x))^2} \, dx}{\log ^4(2)}+\frac {\left (4096 e^4 (16-15 \log (2)-15 \log (8))\right ) \int \frac {x^3}{(5 x-\log (x))^2} \, dx}{\log ^4(2)}+\frac {\left (49152 e^4 \log (8)\right ) \int \frac {x^2}{5 x-\log (x)} \, dx}{\log ^4(2)}+\frac {\left (256 e^4 (64-45 \log (2)-15 \log (8)) \log (8)\right ) \int \frac {x^2}{(5 x-\log (x))^2} \, dx}{\log ^4(2)}+\frac {\left (3072 e^4 \log ^2(8)\right ) \int \frac {x}{5 x-\log (x)} \, dx}{\log ^4(2)}+\frac {\left (16 e^4 (96-45 \log (2)-5 \log (8)) \log ^2(8)\right ) \int \frac {x}{(5 x-\log (x))^2} \, dx}{\log ^4(2)}+\frac {\left (64 e^4 \log ^3(8)\right ) \int \frac {1}{5 x-\log (x)} \, dx}{\log ^4(2)}+\frac {\left (e^4 (64-15 \log (2)) \log ^3(8)\right ) \int \frac {1}{(5 x-\log (x))^2} \, dx}{\log ^4(2)}+\frac {\left (e^4 \log ^4(8)\right ) \int \frac {1}{x (5 x-\log (x))^2} \, dx}{\log ^4(2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.57, size = 50, normalized size = 2.00 \begin {gather*} -\frac {e^4 \left (-16 x+80 x^2+15 x \log (2)-\log (8)\right ) (16 x+\log (8))^3}{(-1+5 x) \log ^4(2) (-5 x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 64, normalized size = 2.56 \begin {gather*} \frac {65536 \, x^{4} e^{4} + 49152 \, x^{3} e^{4} \log \relax (2) + 13824 \, x^{2} e^{4} \log \relax (2)^{2} + 1728 \, x e^{4} \log \relax (2)^{3} + 81 \, e^{4} \log \relax (2)^{4}}{5 \, x \log \relax (2)^{4} - \log \relax (2)^{4} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 64, normalized size = 2.56 \begin {gather*} \frac {65536 \, x^{4} e^{4} + 49152 \, x^{3} e^{4} \log \relax (2) + 13824 \, x^{2} e^{4} \log \relax (2)^{2} + 1728 \, x e^{4} \log \relax (2)^{3} + 81 \, e^{4} \log \relax (2)^{4}}{5 \, x \log \relax (2)^{4} - \log \relax (2)^{4} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.33, size = 61, normalized size = 2.44
method | result | size |
norman | \(\frac {1728 \,{\mathrm e}^{4} \ln \relax (2)^{2} x +49152 x^{3} {\mathrm e}^{4}+81 \,{\mathrm e}^{4} \ln \relax (2)^{3}+13824 x^{2} {\mathrm e}^{4} \ln \relax (2)+\frac {65536 \,{\mathrm e}^{4} x^{4}}{\ln \relax (2)}}{\left (-\ln \relax (x )+5 x \right ) \ln \relax (2)^{3}}\) | \(61\) |
default | \(\frac {{\mathrm e}^{4} \left (\frac {65536 x^{4}}{-\ln \relax (x )+5 x}+\frac {1728 \ln \relax (2)^{3} \ln \relax (x )}{5 \left (-\ln \relax (x )+5 x \right )}+\frac {13824 \ln \relax (2)^{2} x^{2}}{-\ln \relax (x )+5 x}+\frac {49152 x^{3} \ln \relax (2)}{-\ln \relax (x )+5 x}+\frac {81 \ln \relax (2)^{4}}{-\ln \relax (x )+5 x}\right )}{\ln \relax (2)^{4}}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.98, size = 52, normalized size = 2.08 \begin {gather*} \frac {{\left (65536 \, x^{4} + 49152 \, x^{3} \log \relax (2) + 13824 \, x^{2} \log \relax (2)^{2} + 1728 \, x \log \relax (2)^{3} + 81 \, \log \relax (2)^{4}\right )} e^{4}}{{\left (5 \, x - \log \relax (x)\right )} \log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.14, size = 25, normalized size = 1.00 \begin {gather*} \frac {{\mathrm {e}}^4\,{\left (16\,x+\ln \relax (8)\right )}^4}{{\ln \relax (2)}^4\,\left (5\,x-\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 73, normalized size = 2.92 \begin {gather*} \frac {- 65536 x^{4} e^{4} - 49152 x^{3} e^{4} \log {\relax (2 )} - 13824 x^{2} e^{4} \log {\relax (2 )}^{2} - 1728 x e^{4} \log {\relax (2 )}^{3} - 81 e^{4} \log {\relax (2 )}^{4}}{- 5 x \log {\relax (2 )}^{4} + \log {\relax (2 )}^{4} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________