Optimal. Leaf size=33 \[ \frac {3 \left (-3+\frac {-1+x}{2+x}\right ) \left (1+x+\log \left (\frac {x}{2 (x-\log (x))}\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 3.30, antiderivative size = 61, normalized size of antiderivative = 1.85, number of steps used = 23, number of rules used = 6, integrand size = 105, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6741, 6742, 77, 893, 2555, 12} \begin {gather*} -\frac {21}{2 x}-\frac {9}{2 (x+2)}-\frac {21 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 x}+\frac {9 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 (x+2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 77
Rule 893
Rule 2555
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-42+9 x+36 x^2+15 x^3-\left (9 x+9 x^2\right ) \log (x)-\left (-42 x-42 x^2-6 x^3+\left (42+42 x+6 x^2\right ) \log (x)\right ) \log \left (-\frac {x}{-2 x+2 \log (x)}\right )}{x^2 (2+x)^2 (x-\log (x))} \, dx\\ &=\int \left (\frac {36}{(2+x)^2 (x-\log (x))}-\frac {42}{x^2 (2+x)^2 (x-\log (x))}+\frac {9}{x (2+x)^2 (x-\log (x))}+\frac {15 x}{(2+x)^2 (x-\log (x))}-\frac {9 (1+x) \log (x)}{x (2+x)^2 (x-\log (x))}+\frac {6 \left (7+7 x+x^2\right ) \log \left (\frac {x}{2 (x-\log (x))}\right )}{x^2 (2+x)^2}\right ) \, dx\\ &=6 \int \frac {\left (7+7 x+x^2\right ) \log \left (\frac {x}{2 (x-\log (x))}\right )}{x^2 (2+x)^2} \, dx+9 \int \frac {1}{x (2+x)^2 (x-\log (x))} \, dx-9 \int \frac {(1+x) \log (x)}{x (2+x)^2 (x-\log (x))} \, dx+15 \int \frac {x}{(2+x)^2 (x-\log (x))} \, dx+36 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-42 \int \frac {1}{x^2 (2+x)^2 (x-\log (x))} \, dx\\ &=-\frac {21 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 x}+\frac {9 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 (2+x)}-6 \int \frac {(7+2 x) (-1+\log (x))}{2 x^2 (2+x) (x-\log (x))} \, dx-9 \int \left (\frac {-1-x}{x (2+x)^2}+\frac {1+x}{(2+x)^2 (x-\log (x))}\right ) \, dx+9 \int \left (\frac {1}{4 x (x-\log (x))}-\frac {1}{2 (2+x)^2 (x-\log (x))}-\frac {1}{4 (2+x) (x-\log (x))}\right ) \, dx+15 \int \left (-\frac {2}{(2+x)^2 (x-\log (x))}+\frac {1}{(2+x) (x-\log (x))}\right ) \, dx+36 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-42 \int \left (\frac {1}{4 x^2 (x-\log (x))}-\frac {1}{4 x (x-\log (x))}+\frac {1}{4 (2+x)^2 (x-\log (x))}+\frac {1}{4 (2+x) (x-\log (x))}\right ) \, dx\\ &=-\frac {21 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 x}+\frac {9 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 (2+x)}+\frac {9}{4} \int \frac {1}{x (x-\log (x))} \, dx-\frac {9}{4} \int \frac {1}{(2+x) (x-\log (x))} \, dx-3 \int \frac {(7+2 x) (-1+\log (x))}{x^2 (2+x) (x-\log (x))} \, dx-\frac {9}{2} \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-9 \int \frac {-1-x}{x (2+x)^2} \, dx-9 \int \frac {1+x}{(2+x)^2 (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{x^2 (x-\log (x))} \, dx+\frac {21}{2} \int \frac {1}{x (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{(2+x) (x-\log (x))} \, dx+15 \int \frac {1}{(2+x) (x-\log (x))} \, dx-30 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx+36 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx\\ &=-\frac {21 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 x}+\frac {9 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 (2+x)}+\frac {9}{4} \int \frac {1}{x (x-\log (x))} \, dx-\frac {9}{4} \int \frac {1}{(2+x) (x-\log (x))} \, dx-3 \int \left (\frac {-7-2 x}{x^2 (2+x)}+\frac {(-1+x) (7+2 x)}{x^2 (2+x) (x-\log (x))}\right ) \, dx-\frac {9}{2} \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-9 \int \left (-\frac {1}{4 x}-\frac {1}{2 (2+x)^2}+\frac {1}{4 (2+x)}\right ) \, dx-9 \int \left (-\frac {1}{(2+x)^2 (x-\log (x))}+\frac {1}{(2+x) (x-\log (x))}\right ) \, dx-\frac {21}{2} \int \frac {1}{x^2 (x-\log (x))} \, dx+\frac {21}{2} \int \frac {1}{x (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{(2+x) (x-\log (x))} \, dx+15 \int \frac {1}{(2+x) (x-\log (x))} \, dx-30 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx+36 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx\\ &=-\frac {9}{2 (2+x)}+\frac {9 \log (x)}{4}-\frac {9}{4} \log (2+x)-\frac {21 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 x}+\frac {9 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 (2+x)}+\frac {9}{4} \int \frac {1}{x (x-\log (x))} \, dx-\frac {9}{4} \int \frac {1}{(2+x) (x-\log (x))} \, dx-3 \int \frac {-7-2 x}{x^2 (2+x)} \, dx-3 \int \frac {(-1+x) (7+2 x)}{x^2 (2+x) (x-\log (x))} \, dx-\frac {9}{2} \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx+9 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-9 \int \frac {1}{(2+x) (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{x^2 (x-\log (x))} \, dx+\frac {21}{2} \int \frac {1}{x (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{(2+x) (x-\log (x))} \, dx+15 \int \frac {1}{(2+x) (x-\log (x))} \, dx-30 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx+36 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx\\ &=-\frac {9}{2 (2+x)}+\frac {9 \log (x)}{4}-\frac {9}{4} \log (2+x)-\frac {21 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 x}+\frac {9 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 (2+x)}+\frac {9}{4} \int \frac {1}{x (x-\log (x))} \, dx-\frac {9}{4} \int \frac {1}{(2+x) (x-\log (x))} \, dx-3 \int \left (-\frac {7}{2 x^2}+\frac {3}{4 x}-\frac {3}{4 (2+x)}\right ) \, dx-3 \int \left (-\frac {7}{2 x^2 (x-\log (x))}+\frac {17}{4 x (x-\log (x))}-\frac {9}{4 (2+x) (x-\log (x))}\right ) \, dx-\frac {9}{2} \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx+9 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-9 \int \frac {1}{(2+x) (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{x^2 (x-\log (x))} \, dx+\frac {21}{2} \int \frac {1}{x (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{(2+x) (x-\log (x))} \, dx+15 \int \frac {1}{(2+x) (x-\log (x))} \, dx-30 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx+36 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx\\ &=-\frac {21}{2 x}-\frac {9}{2 (2+x)}-\frac {21 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 x}+\frac {9 \log \left (\frac {x}{2 (x-\log (x))}\right )}{2 (2+x)}+\frac {9}{4} \int \frac {1}{x (x-\log (x))} \, dx-\frac {9}{4} \int \frac {1}{(2+x) (x-\log (x))} \, dx-\frac {9}{2} \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx+\frac {27}{4} \int \frac {1}{(2+x) (x-\log (x))} \, dx+9 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-9 \int \frac {1}{(2+x) (x-\log (x))} \, dx+\frac {21}{2} \int \frac {1}{x (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx-\frac {21}{2} \int \frac {1}{(2+x) (x-\log (x))} \, dx-\frac {51}{4} \int \frac {1}{x (x-\log (x))} \, dx+15 \int \frac {1}{(2+x) (x-\log (x))} \, dx-30 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx+36 \int \frac {1}{(2+x)^2 (x-\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 34, normalized size = 1.03 \begin {gather*} -\frac {3 \left (7+5 x+(7+2 x) \log \left (\frac {x}{2 x-2 \log (x)}\right )\right )}{x (2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 34, normalized size = 1.03 \begin {gather*} -\frac {3 \, {\left ({\left (2 \, x + 7\right )} \log \left (\frac {x}{2 \, {\left (x - \log \relax (x)\right )}}\right ) + 5 \, x + 7\right )}}{x^{2} + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 54, normalized size = 1.64 \begin {gather*} -\frac {3}{2} \, {\left (\frac {3}{x + 2} - \frac {7}{x}\right )} \log \left (2 \, x - 2 \, \log \relax (x)\right ) + \frac {3}{2} \, {\left (\frac {3}{x + 2} - \frac {7}{x}\right )} \log \relax (x) - \frac {9}{2 \, {\left (x + 2\right )}} - \frac {21}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 277, normalized size = 8.39
method | result | size |
risch | \(\frac {3 \left (7+2 x \right ) \ln \left (x -\ln \relax (x )\right )}{x \left (2+x \right )}+\frac {3 i \pi x \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )-x}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )-x}\right )^{2}+\frac {21 i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )-x}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )-x}\right )^{2}}{2}-3 i \pi x \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )-x}\right )^{3}+\frac {21 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )-x}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )-x}\right )}{2}-\frac {21 i \pi \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )-x}\right )^{3}}{2}-3 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )-x}\right )^{2}-\frac {21 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )-x}\right )^{2}}{2}+3 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )-x}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )-x}\right )-21+6 x \ln \relax (2)-6 x \ln \relax (x )+21 \ln \relax (2)-15 x -21 \ln \relax (x )}{x \left (2+x \right )}\) | \(277\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 47, normalized size = 1.42 \begin {gather*} \frac {3 \, {\left (x {\left (2 \, \log \relax (2) - 5\right )} + {\left (2 \, x + 7\right )} \log \left (x - \log \relax (x)\right ) - {\left (2 \, x + 7\right )} \log \relax (x) + 7 \, \log \relax (2) - 7\right )}}{x^{2} + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.23, size = 46, normalized size = 1.39 \begin {gather*} -\frac {15\,x+21}{x^2+2\,x}-\frac {\ln \left (\frac {x}{2\,x-2\,\ln \relax (x)}\right )\,\left (6\,x+21\right )}{x^2+2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 39, normalized size = 1.18 \begin {gather*} \frac {- 15 x - 21}{x^{2} + 2 x} + \frac {\left (- 6 x - 21\right ) \log {\left (- \frac {x}{- 2 x + 2 \log {\relax (x )}} \right )}}{x^{2} + 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________