Optimal. Leaf size=19 \[ 2 (3-x-\log (x+\log (\log (x (1+x))))) \]
________________________________________________________________________________________
Rubi [A] time = 1.14, antiderivative size = 16, normalized size of antiderivative = 0.84, number of steps used = 5, number of rules used = 4, integrand size = 86, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {6688, 12, 6742, 6684} \begin {gather*} -2 x-2 \log (x+\log (\log (x (x+1)))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 (-1-2 x-x (1+x) \log (x (1+x)) (1+x+\log (\log (x (1+x)))))}{x (1+x) \log (x (1+x)) (x+\log (\log (x (1+x))))} \, dx\\ &=2 \int \frac {-1-2 x-x (1+x) \log (x (1+x)) (1+x+\log (\log (x (1+x))))}{x (1+x) \log (x (1+x)) (x+\log (\log (x (1+x))))} \, dx\\ &=2 \int \left (-1+\frac {-1-2 x-x \log (x (1+x))-x^2 \log (x (1+x))}{x (1+x) \log (x (1+x)) (x+\log (\log (x (1+x))))}\right ) \, dx\\ &=-2 x+2 \int \frac {-1-2 x-x \log (x (1+x))-x^2 \log (x (1+x))}{x (1+x) \log (x (1+x)) (x+\log (\log (x (1+x))))} \, dx\\ &=-2 x-2 \log (x+\log (\log (x (1+x))))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 14, normalized size = 0.74 \begin {gather*} -2 (x+\log (x+\log (\log (x (1+x))))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 16, normalized size = 0.84 \begin {gather*} -2 \, x - 2 \, \log \left (x + \log \left (\log \left (x^{2} + x\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 16, normalized size = 0.84 \begin {gather*} -2 \, x - 2 \, \log \left (x + \log \left (\log \left (x^{2} + x\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {\left (-2 x^{2}-2 x \right ) \ln \left (x^{2}+x \right ) \ln \left (\ln \left (x^{2}+x \right )\right )+\left (-2 x^{3}-4 x^{2}-2 x \right ) \ln \left (x^{2}+x \right )-4 x -2}{\left (x^{2}+x \right ) \ln \left (x^{2}+x \right ) \ln \left (\ln \left (x^{2}+x \right )\right )+\left (x^{3}+x^{2}\right ) \ln \left (x^{2}+x \right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 17, normalized size = 0.89 \begin {gather*} -2 \, x - 2 \, \log \left (x + \log \left (\log \left (x + 1\right ) + \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.40, size = 16, normalized size = 0.84 \begin {gather*} -2\,x-2\,\ln \left (x+\ln \left (\ln \left (x\,\left (x+1\right )\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 17, normalized size = 0.89 \begin {gather*} - 2 x - 2 \log {\left (x + \log {\left (\log {\left (x^{2} + x \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________