Optimal. Leaf size=24 \[ \frac {3-\frac {\log (x)}{x}}{5-x+\frac {16 \log (2)}{e^3}} \]
________________________________________________________________________________________
Rubi [B] time = 0.99, antiderivative size = 103, normalized size of antiderivative = 4.29, number of steps used = 11, number of rules used = 8, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {6688, 12, 6742, 893, 2357, 2304, 2314, 31} \begin {gather*} -\frac {e^9 x \log (x)}{\left (5 e^3+16 \log (2)\right )^2 \left (-e^3 x+5 e^3+16 \log (2)\right )}-\frac {e^3 \log (x)}{x \left (5 e^3+16 \log (2)\right )}-\frac {e^6 \log (x)}{\left (5 e^3+16 \log (2)\right )^2}+\frac {3 e^3}{-e^3 x+5 e^3+16 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 893
Rule 2304
Rule 2314
Rule 2357
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^3 \left (e^3 \left (-5+x+3 x^2\right )-16 \log (2)+\left (e^3 (5-2 x)+16 \log (2)\right ) \log (x)\right )}{x^2 \left (5 e^3-e^3 x+16 \log (2)\right )^2} \, dx\\ &=e^3 \int \frac {e^3 \left (-5+x+3 x^2\right )-16 \log (2)+\left (e^3 (5-2 x)+16 \log (2)\right ) \log (x)}{x^2 \left (5 e^3-e^3 x+16 \log (2)\right )^2} \, dx\\ &=e^3 \int \left (\frac {-5 e^3+e^3 x+3 e^3 x^2-16 \log (2)}{x^2 \left (-5 e^3+e^3 x-16 \log (2)\right )^2}-\frac {\left (-5 e^3+2 e^3 x-16 \log (2)\right ) \log (x)}{x^2 \left (-5 e^3+e^3 x-16 \log (2)\right )^2}\right ) \, dx\\ &=e^3 \int \frac {-5 e^3+e^3 x+3 e^3 x^2-16 \log (2)}{x^2 \left (-5 e^3+e^3 x-16 \log (2)\right )^2} \, dx-e^3 \int \frac {\left (-5 e^3+2 e^3 x-16 \log (2)\right ) \log (x)}{x^2 \left (-5 e^3+e^3 x-16 \log (2)\right )^2} \, dx\\ &=e^3 \int \left (\frac {3 e^3}{\left (-5 e^3+e^3 x-16 \log (2)\right )^2}-\frac {e^3}{x \left (5 e^3+16 \log (2)\right )^2}+\frac {e^6}{\left (-5 e^3+e^3 x-16 \log (2)\right ) \left (5 e^3+16 \log (2)\right )^2}-\frac {1}{x^2 \left (5 e^3+16 \log (2)\right )}\right ) \, dx-e^3 \int \left (-\frac {\log (x)}{x^2 \left (5 e^3+16 \log (2)\right )}+\frac {e^6 \log (x)}{\left (-5 e^3+e^3 x-16 \log (2)\right )^2 \left (5 e^3+16 \log (2)\right )}\right ) \, dx\\ &=\frac {e^3}{x \left (5 e^3+16 \log (2)\right )}+\frac {3 e^3}{5 e^3-e^3 x+16 \log (2)}-\frac {e^6 \log (x)}{\left (5 e^3+16 \log (2)\right )^2}+\frac {e^6 \log \left (5 e^3-e^3 x+16 \log (2)\right )}{\left (5 e^3+16 \log (2)\right )^2}+\frac {e^3 \int \frac {\log (x)}{x^2} \, dx}{5 e^3+16 \log (2)}-\frac {e^9 \int \frac {\log (x)}{\left (-5 e^3+e^3 x-16 \log (2)\right )^2} \, dx}{5 e^3+16 \log (2)}\\ &=\frac {3 e^3}{5 e^3-e^3 x+16 \log (2)}-\frac {e^6 \log (x)}{\left (5 e^3+16 \log (2)\right )^2}-\frac {e^3 \log (x)}{x \left (5 e^3+16 \log (2)\right )}-\frac {e^9 x \log (x)}{\left (5 e^3+16 \log (2)\right )^2 \left (5 e^3-e^3 x+16 \log (2)\right )}+\frac {e^6 \log \left (5 e^3-e^3 x+16 \log (2)\right )}{\left (5 e^3+16 \log (2)\right )^2}-\frac {e^9 \int \frac {1}{-5 e^3+e^3 x-16 \log (2)} \, dx}{\left (5 e^3+16 \log (2)\right )^2}\\ &=\frac {3 e^3}{5 e^3-e^3 x+16 \log (2)}-\frac {e^6 \log (x)}{\left (5 e^3+16 \log (2)\right )^2}-\frac {e^3 \log (x)}{x \left (5 e^3+16 \log (2)\right )}-\frac {e^9 x \log (x)}{\left (5 e^3+16 \log (2)\right )^2 \left (5 e^3-e^3 x+16 \log (2)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 27, normalized size = 1.12 \begin {gather*} \frac {e^3 (-3 x+\log (x))}{x \left (e^3 (-5+x)-16 \log (2)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.11, size = 32, normalized size = 1.33 \begin {gather*} -\frac {3 \, x e^{3} - e^{3} \log \relax (x)}{{\left (x^{2} - 5 \, x\right )} e^{3} - 16 \, x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.47, size = 33, normalized size = 1.38 \begin {gather*} -\frac {3 \, x e^{3} - e^{3} \log \relax (x)}{x^{2} e^{3} - 5 \, x e^{3} - 16 \, x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 31, normalized size = 1.29
method | result | size |
norman | \(\frac {\ln \relax (x ) {\mathrm e}^{3}-3 x \,{\mathrm e}^{3}}{x \left (x \,{\mathrm e}^{3}-5 \,{\mathrm e}^{3}-16 \ln \relax (2)\right )}\) | \(31\) |
risch | \(\frac {{\mathrm e}^{3} \ln \relax (x )}{\left (x \,{\mathrm e}^{3}-5 \,{\mathrm e}^{3}-16 \ln \relax (2)\right ) x}-\frac {3 \,{\mathrm e}^{3}}{x \,{\mathrm e}^{3}-5 \,{\mathrm e}^{3}-16 \ln \relax (2)}\) | \(44\) |
default | \(\text {Expression too large to display}\) | \(2282\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 589, normalized size = 24.54 \begin {gather*} 16 \, {\left (\frac {2 \, e^{3} \log \left (x e^{3} - 5 \, e^{3} - 16 \, \log \relax (2)\right )}{3840 \, e^{3} \log \relax (2)^{2} + 4096 \, \log \relax (2)^{3} + 1200 \, e^{6} \log \relax (2) + 125 \, e^{9}} - \frac {2 \, e^{3} \log \relax (x)}{3840 \, e^{3} \log \relax (2)^{2} + 4096 \, \log \relax (2)^{3} + 1200 \, e^{6} \log \relax (2) + 125 \, e^{9}} + \frac {2 \, x e^{3} - 5 \, e^{3} - 16 \, \log \relax (2)}{{\left (256 \, e^{3} \log \relax (2)^{2} + 160 \, e^{6} \log \relax (2) + 25 \, e^{9}\right )} x^{2} - {\left (3840 \, e^{3} \log \relax (2)^{2} + 4096 \, \log \relax (2)^{3} + 1200 \, e^{6} \log \relax (2) + 125 \, e^{9}\right )} x}\right )} e^{3} \log \relax (2) + 5 \, {\left (\frac {2 \, e^{3} \log \left (x e^{3} - 5 \, e^{3} - 16 \, \log \relax (2)\right )}{3840 \, e^{3} \log \relax (2)^{2} + 4096 \, \log \relax (2)^{3} + 1200 \, e^{6} \log \relax (2) + 125 \, e^{9}} - \frac {2 \, e^{3} \log \relax (x)}{3840 \, e^{3} \log \relax (2)^{2} + 4096 \, \log \relax (2)^{3} + 1200 \, e^{6} \log \relax (2) + 125 \, e^{9}} + \frac {2 \, x e^{3} - 5 \, e^{3} - 16 \, \log \relax (2)}{{\left (256 \, e^{3} \log \relax (2)^{2} + 160 \, e^{6} \log \relax (2) + 25 \, e^{9}\right )} x^{2} - {\left (3840 \, e^{3} \log \relax (2)^{2} + 4096 \, \log \relax (2)^{3} + 1200 \, e^{6} \log \relax (2) + 125 \, e^{9}\right )} x}\right )} e^{6} - {\left (\frac {\log \left (x e^{3} - 5 \, e^{3} - 16 \, \log \relax (2)\right )}{160 \, e^{3} \log \relax (2) + 256 \, \log \relax (2)^{2} + 25 \, e^{6}} - \frac {\log \relax (x)}{160 \, e^{3} \log \relax (2) + 256 \, \log \relax (2)^{2} + 25 \, e^{6}} + \frac {1}{{\left (16 \, e^{3} \log \relax (2) + 5 \, e^{6}\right )} x - 160 \, e^{3} \log \relax (2) - 256 \, \log \relax (2)^{2} - 25 \, e^{6}}\right )} e^{6} - \frac {e^{6} \log \left (x e^{3} - 5 \, e^{3} - 16 \, \log \relax (2)\right )}{160 \, e^{3} \log \relax (2) + 256 \, \log \relax (2)^{2} + 25 \, e^{6}} + \frac {256 \, e^{3} \log \relax (2)^{2} - {\left (16 \, e^{6} \log \relax (2) + 5 \, e^{9}\right )} x + 160 \, e^{6} \log \relax (2) + {\left (x^{2} e^{9} + 256 \, e^{3} \log \relax (2)^{2} - {\left (16 \, e^{6} \log \relax (2) + 5 \, e^{9}\right )} x + 160 \, e^{6} \log \relax (2) + 25 \, e^{9}\right )} \log \relax (x) + 25 \, e^{9}}{{\left (256 \, e^{3} \log \relax (2)^{2} + 160 \, e^{6} \log \relax (2) + 25 \, e^{9}\right )} x^{2} - {\left (3840 \, e^{3} \log \relax (2)^{2} + 4096 \, \log \relax (2)^{3} + 1200 \, e^{6} \log \relax (2) + 125 \, e^{9}\right )} x} - \frac {3 \, e^{6}}{x e^{6} - 16 \, e^{3} \log \relax (2) - 5 \, e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.80, size = 54, normalized size = 2.25 \begin {gather*} -\frac {{\mathrm {e}}^3\,\left (5\,{\mathrm {e}}^3\,\ln \relax (x)-3\,x^2\,{\mathrm {e}}^3+16\,\ln \relax (2)\,\ln \relax (x)\right )}{x\,\left (5\,{\mathrm {e}}^3+16\,\ln \relax (2)\right )\,\left (5\,{\mathrm {e}}^3+16\,\ln \relax (2)-x\,{\mathrm {e}}^3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 49, normalized size = 2.04 \begin {gather*} \frac {e^{3} \log {\relax (x )}}{x^{2} e^{3} - 5 x e^{3} - 16 x \log {\relax (2 )}} - \frac {3 e^{6}}{x e^{6} - 5 e^{6} - 16 e^{3} \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________