Optimal. Leaf size=37 \[ \frac {1}{3} \left (-x+\frac {\log ((1-x) x)}{10 \left (-x+\frac {x}{-1+x}\right ) \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 7.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-40 x^2+40 x^3-10 x^4\right ) \log ^2(x)+\left (2-3 x+x^2\right ) \log \left (x-x^2\right )+\log (x) \left (-2+5 x-2 x^2+\left (2-2 x+x^2\right ) \log \left (x-x^2\right )\right )}{\left (120 x^2-120 x^3+30 x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-40 x^2+40 x^3-10 x^4\right ) \log ^2(x)+\left (2-3 x+x^2\right ) \log \left (x-x^2\right )+\log (x) \left (-2+5 x-2 x^2+\left (2-2 x+x^2\right ) \log \left (x-x^2\right )\right )}{x^2 \left (120-120 x+30 x^2\right ) \log ^2(x)} \, dx\\ &=\int \frac {\left (-40 x^2+40 x^3-10 x^4\right ) \log ^2(x)+\left (2-3 x+x^2\right ) \log \left (x-x^2\right )+\log (x) \left (-2+5 x-2 x^2+\left (2-2 x+x^2\right ) \log \left (x-x^2\right )\right )}{30 (-2+x)^2 x^2 \log ^2(x)} \, dx\\ &=\frac {1}{30} \int \frac {\left (-40 x^2+40 x^3-10 x^4\right ) \log ^2(x)+\left (2-3 x+x^2\right ) \log \left (x-x^2\right )+\log (x) \left (-2+5 x-2 x^2+\left (2-2 x+x^2\right ) \log \left (x-x^2\right )\right )}{(-2+x)^2 x^2 \log ^2(x)} \, dx\\ &=\frac {1}{30} \int \left (\frac {1-2 x+20 x^2 \log (x)-10 x^3 \log (x)}{(-2+x) x^2 \log (x)}+\frac {\left (2-3 x+x^2+2 \log (x)-2 x \log (x)+x^2 \log (x)\right ) \log ((1-x) x)}{(2-x)^2 x^2 \log ^2(x)}\right ) \, dx\\ &=\frac {1}{30} \int \frac {1-2 x+20 x^2 \log (x)-10 x^3 \log (x)}{(-2+x) x^2 \log (x)} \, dx+\frac {1}{30} \int \frac {\left (2-3 x+x^2+2 \log (x)-2 x \log (x)+x^2 \log (x)\right ) \log ((1-x) x)}{(2-x)^2 x^2 \log ^2(x)} \, dx\\ &=\frac {1}{30} \int \left (-10+\frac {1-2 x}{(-2+x) x^2 \log (x)}\right ) \, dx+\frac {1}{30} \int \left (\frac {\left (2-3 x+x^2+2 \log (x)-2 x \log (x)+x^2 \log (x)\right ) \log ((1-x) x)}{4 (2-x)^2 \log ^2(x)}+\frac {\left (2-3 x+x^2+2 \log (x)-2 x \log (x)+x^2 \log (x)\right ) \log ((1-x) x)}{4 (2-x) \log ^2(x)}+\frac {\left (2-3 x+x^2+2 \log (x)-2 x \log (x)+x^2 \log (x)\right ) \log ((1-x) x)}{4 x^2 \log ^2(x)}+\frac {\left (2-3 x+x^2+2 \log (x)-2 x \log (x)+x^2 \log (x)\right ) \log ((1-x) x)}{4 x \log ^2(x)}\right ) \, dx\\ &=-\frac {x}{3}+\frac {1}{120} \int \frac {\left (2-3 x+x^2+2 \log (x)-2 x \log (x)+x^2 \log (x)\right ) \log ((1-x) x)}{(2-x)^2 \log ^2(x)} \, dx+\frac {1}{120} \int \frac {\left (2-3 x+x^2+2 \log (x)-2 x \log (x)+x^2 \log (x)\right ) \log ((1-x) x)}{(2-x) \log ^2(x)} \, dx+\frac {1}{120} \int \frac {\left (2-3 x+x^2+2 \log (x)-2 x \log (x)+x^2 \log (x)\right ) \log ((1-x) x)}{x^2 \log ^2(x)} \, dx+\frac {1}{120} \int \frac {\left (2-3 x+x^2+2 \log (x)-2 x \log (x)+x^2 \log (x)\right ) \log ((1-x) x)}{x \log ^2(x)} \, dx+\frac {1}{30} \int \frac {1-2 x}{(-2+x) x^2 \log (x)} \, dx\\ &=-\frac {x}{3}+\frac {1}{120} \int \left (\frac {\log ((1-x) x)}{\log ^2(x)}+\frac {2 \log ((1-x) x)}{x^2 \log ^2(x)}-\frac {3 \log ((1-x) x)}{x \log ^2(x)}+\frac {\log ((1-x) x)}{\log (x)}+\frac {2 \log ((1-x) x)}{x^2 \log (x)}-\frac {2 \log ((1-x) x)}{x \log (x)}\right ) \, dx+\frac {1}{120} \int \left (-\frac {3 \log ((1-x) x)}{\log ^2(x)}+\frac {2 \log ((1-x) x)}{x \log ^2(x)}+\frac {x \log ((1-x) x)}{\log ^2(x)}-\frac {2 \log ((1-x) x)}{\log (x)}+\frac {2 \log ((1-x) x)}{x \log (x)}+\frac {x \log ((1-x) x)}{\log (x)}\right ) \, dx+\frac {1}{120} \int \left (\frac {2 \log ((1-x) x)}{(2-x)^2 \log ^2(x)}-\frac {3 x \log ((1-x) x)}{(2-x)^2 \log ^2(x)}+\frac {x^2 \log ((1-x) x)}{(2-x)^2 \log ^2(x)}+\frac {2 \log ((1-x) x)}{(2-x)^2 \log (x)}-\frac {2 x \log ((1-x) x)}{(2-x)^2 \log (x)}+\frac {x^2 \log ((1-x) x)}{(2-x)^2 \log (x)}\right ) \, dx+\frac {1}{120} \int \left (\frac {2 \log ((1-x) x)}{(2-x) \log ^2(x)}+\frac {3 x \log ((1-x) x)}{(-2+x) \log ^2(x)}+\frac {x^2 \log ((1-x) x)}{(2-x) \log ^2(x)}+\frac {2 \log ((1-x) x)}{(2-x) \log (x)}+\frac {2 x \log ((1-x) x)}{(-2+x) \log (x)}+\frac {x^2 \log ((1-x) x)}{(2-x) \log (x)}\right ) \, dx+\frac {1}{30} \int \frac {1-2 x}{(-2+x) x^2 \log (x)} \, dx\\ &=-\frac {x}{3}+\frac {1}{120} \int \frac {\log ((1-x) x)}{\log ^2(x)} \, dx+\frac {1}{120} \int \frac {x \log ((1-x) x)}{\log ^2(x)} \, dx+\frac {1}{120} \int \frac {x^2 \log ((1-x) x)}{(2-x)^2 \log ^2(x)} \, dx+\frac {1}{120} \int \frac {x^2 \log ((1-x) x)}{(2-x) \log ^2(x)} \, dx+\frac {1}{120} \int \frac {\log ((1-x) x)}{\log (x)} \, dx+\frac {1}{120} \int \frac {x \log ((1-x) x)}{\log (x)} \, dx+\frac {1}{120} \int \frac {x^2 \log ((1-x) x)}{(2-x)^2 \log (x)} \, dx+\frac {1}{120} \int \frac {x^2 \log ((1-x) x)}{(2-x) \log (x)} \, dx+\frac {1}{60} \int \frac {\log ((1-x) x)}{(2-x)^2 \log ^2(x)} \, dx+\frac {1}{60} \int \frac {\log ((1-x) x)}{(2-x) \log ^2(x)} \, dx+\frac {1}{60} \int \frac {\log ((1-x) x)}{x^2 \log ^2(x)} \, dx+\frac {1}{60} \int \frac {\log ((1-x) x)}{x \log ^2(x)} \, dx-\frac {1}{60} \int \frac {\log ((1-x) x)}{\log (x)} \, dx+\frac {1}{60} \int \frac {\log ((1-x) x)}{(2-x)^2 \log (x)} \, dx+\frac {1}{60} \int \frac {\log ((1-x) x)}{(2-x) \log (x)} \, dx+\frac {1}{60} \int \frac {\log ((1-x) x)}{x^2 \log (x)} \, dx-\frac {1}{60} \int \frac {x \log ((1-x) x)}{(2-x)^2 \log (x)} \, dx+\frac {1}{60} \int \frac {x \log ((1-x) x)}{(-2+x) \log (x)} \, dx-\frac {1}{40} \int \frac {\log ((1-x) x)}{\log ^2(x)} \, dx-\frac {1}{40} \int \frac {\log ((1-x) x)}{x \log ^2(x)} \, dx-\frac {1}{40} \int \frac {x \log ((1-x) x)}{(2-x)^2 \log ^2(x)} \, dx+\frac {1}{40} \int \frac {x \log ((1-x) x)}{(-2+x) \log ^2(x)} \, dx+\frac {1}{30} \int \frac {1-2 x}{(-2+x) x^2 \log (x)} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 32, normalized size = 0.86 \begin {gather*} \frac {1}{30} \left (-10 x-\frac {(-1+x) \log (-((-1+x) x))}{(-2+x) x \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 41, normalized size = 1.11 \begin {gather*} -\frac {{\left (x - 1\right )} \log \left (-x^{2} + x\right ) + 10 \, {\left (x^{3} - 2 \, x^{2}\right )} \log \relax (x)}{30 \, {\left (x^{2} - 2 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 41, normalized size = 1.11 \begin {gather*} -\frac {1}{3} \, x - \frac {{\left (x - 1\right )} \log \left (-x + 1\right )}{30 \, {\left (x^{2} \log \relax (x) - 2 \, x \log \relax (x)\right )}} - \frac {1}{60 \, {\left (x - 2\right )}} - \frac {1}{60 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.17, size = 259, normalized size = 7.00
method | result | size |
risch | \(-\frac {\left (x -1\right ) \ln \left (x -1\right )}{30 x \left (x -2\right ) \ln \relax (x )}-\frac {-i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{3}+i \pi x \mathrm {csgn}\left (i x \left (x -1\right )\right )^{3}-i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2} \mathrm {csgn}\left (i \left (x -1\right )\right )-2 i \pi -i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )-i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2} \mathrm {csgn}\left (i x \right )-2 i \pi x \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}+2 i x \pi +2 i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}+i \pi x \,\mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}+i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i x \left (x -1\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -1\right )\right )+20 x^{3} \ln \relax (x )-40 x^{2} \ln \relax (x )+2 x \ln \relax (x )-2 \ln \relax (x )}{60 x \left (x -2\right ) \ln \relax (x )}\) | \(259\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 42, normalized size = 1.14 \begin {gather*} -\frac {{\left (10 \, x^{3} - 20 \, x^{2} + x - 1\right )} \log \relax (x) + {\left (x - 1\right )} \log \left (-x + 1\right )}{30 \, {\left (x^{2} - 2 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.94, size = 39, normalized size = 1.05 \begin {gather*} \frac {\frac {\ln \left (x-x^2\right )}{30}-\frac {x\,\ln \left (x-x^2\right )}{30}}{x\,\ln \relax (x)\,\left (x-2\right )}-\frac {x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 27, normalized size = 0.73 \begin {gather*} - \frac {x}{3} + \frac {\left (1 - x\right ) \log {\left (- x^{2} + x \right )}}{30 x^{2} \log {\relax (x )} - 60 x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________