Optimal. Leaf size=25 \[ x+\left (3-x-5 e^{5+\frac {e^{25+x}}{5}} x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 69, normalized size of antiderivative = 2.76, number of steps used = 5, number of rules used = 3, integrand size = 90, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {12, 14, 2288} \begin {gather*} 25 e^{\frac {2}{5} \left (e^{x+25}+25\right )} x^2-10 e^{\frac {1}{5} \left (e^{x+25}+25\right )-x-25} \left (3 e^{x+25} x-e^{x+25} x^2\right )+\frac {1}{4} (5-2 x)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-25 x+10 x^2+e^{\frac {2}{5} \left (25+e^{25+x}+5 \log (5)+5 \log (x)\right )} \left (10+2 e^{25+x} x\right )+e^{\frac {1}{5} \left (25+e^{25+x}+5 \log (5)+5 \log (x)\right )} \left (-30+20 x+e^{25+x} \left (-6 x+2 x^2\right )\right )}{x} \, dx\\ &=\frac {1}{5} \int \left (5 (-5+2 x)+50 e^{\frac {2}{5} \left (25+e^{25+x}\right )} x \left (5+e^{25+x} x\right )+10 e^{\frac {1}{5} \left (25+e^{25+x}\right )} \left (-15+10 x-3 e^{25+x} x+e^{25+x} x^2\right )\right ) \, dx\\ &=\frac {1}{4} (5-2 x)^2+2 \int e^{\frac {1}{5} \left (25+e^{25+x}\right )} \left (-15+10 x-3 e^{25+x} x+e^{25+x} x^2\right ) \, dx+10 \int e^{\frac {2}{5} \left (25+e^{25+x}\right )} x \left (5+e^{25+x} x\right ) \, dx\\ &=\frac {1}{4} (5-2 x)^2+25 e^{\frac {2}{5} \left (25+e^{25+x}\right )} x^2-10 e^{-25+\frac {1}{5} \left (25+e^{25+x}\right )-x} \left (3 e^{25+x} x-e^{25+x} x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 52, normalized size = 2.08 \begin {gather*} -5 x+x^2+25 e^{10+\frac {2 e^{25+x}}{5}} x^2+e^{\frac {e^{25+x}}{5}} \left (-30 e^5 x+10 e^5 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.85, size = 42, normalized size = 1.68 \begin {gather*} x^{2} + 2 \, {\left (x - 3\right )} e^{\left (\frac {1}{5} \, e^{\left (x + 25\right )} + \log \relax (5) + \log \relax (x) + 5\right )} - 5 \, x + e^{\left (\frac {2}{5} \, e^{\left (x + 25\right )} + 2 \, \log \relax (5) + 2 \, \log \relax (x) + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {10 \, x^{2} + 2 \, {\left (x e^{\left (x + 25\right )} + 5\right )} e^{\left (\frac {2}{5} \, e^{\left (x + 25\right )} + 2 \, \log \relax (5) + 2 \, \log \relax (x) + 10\right )} + 2 \, {\left ({\left (x^{2} - 3 \, x\right )} e^{\left (x + 25\right )} + 10 \, x - 15\right )} e^{\left (\frac {1}{5} \, e^{\left (x + 25\right )} + \log \relax (5) + \log \relax (x) + 5\right )} - 25 \, x}{5 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 38, normalized size = 1.52
method | result | size |
risch | \(x^{2}+25 x^{2} {\mathrm e}^{10+\frac {2 \,{\mathrm e}^{x +25}}{5}}-5 x +\left (10 x -30\right ) x \,{\mathrm e}^{5+\frac {{\mathrm e}^{x +25}}{5}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 25 \, x^{2} e^{\left (\frac {2}{5} \, e^{\left (x + 25\right )} + 10\right )} + x^{2} - 30 \, {\rm Ei}\left (\frac {1}{5} \, e^{\left (x + 25\right )}\right ) e^{5} + 10 \, {\left (x^{2} e^{5} - 3 \, x e^{5}\right )} e^{\left (\frac {1}{5} \, e^{\left (x + 25\right )}\right )} - 5 \, x + 30 \, \int e^{\left (\frac {1}{5} \, e^{\left (x + 25\right )} + 5\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.82, size = 40, normalized size = 1.60 \begin {gather*} x\,\left (x-30\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{25}\,{\mathrm {e}}^x}{5}+5}+10\,x\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{25}\,{\mathrm {e}}^x}{5}+5}+25\,x\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{25}\,{\mathrm {e}}^x}{5}+10}-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 41, normalized size = 1.64 \begin {gather*} 25 x^{2} e^{\frac {2 e^{x + 25}}{5} + 10} + x^{2} - 5 x + \left (10 x^{2} - 30 x\right ) e^{\frac {e^{x + 25}}{5} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________