Optimal. Leaf size=23 \[ 3 \left (e^x+\frac {x^2}{9}\right ) \left (5+e^x+(2+x)^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.05, antiderivative size = 48, normalized size of antiderivative = 2.09, number of steps used = 11, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 2194, 2196, 2176} \begin {gather*} \frac {x^4}{3}+\frac {4 x^3}{3}+\frac {10 e^x x^2}{3}+3 x^2+12 e^x x+27 e^x+3 e^{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (18 e^{2 x}+18 x+12 x^2+4 x^3+e^x \left (117+56 x+10 x^2\right )\right ) \, dx\\ &=3 x^2+\frac {4 x^3}{3}+\frac {x^4}{3}+\frac {1}{3} \int e^x \left (117+56 x+10 x^2\right ) \, dx+6 \int e^{2 x} \, dx\\ &=3 e^{2 x}+3 x^2+\frac {4 x^3}{3}+\frac {x^4}{3}+\frac {1}{3} \int \left (117 e^x+56 e^x x+10 e^x x^2\right ) \, dx\\ &=3 e^{2 x}+3 x^2+\frac {4 x^3}{3}+\frac {x^4}{3}+\frac {10}{3} \int e^x x^2 \, dx+\frac {56}{3} \int e^x x \, dx+39 \int e^x \, dx\\ &=39 e^x+3 e^{2 x}+\frac {56 e^x x}{3}+3 x^2+\frac {10 e^x x^2}{3}+\frac {4 x^3}{3}+\frac {x^4}{3}-\frac {20}{3} \int e^x x \, dx-\frac {56 \int e^x \, dx}{3}\\ &=\frac {61 e^x}{3}+3 e^{2 x}+12 e^x x+3 x^2+\frac {10 e^x x^2}{3}+\frac {4 x^3}{3}+\frac {x^4}{3}+\frac {20 \int e^x \, dx}{3}\\ &=27 e^x+3 e^{2 x}+12 e^x x+3 x^2+\frac {10 e^x x^2}{3}+\frac {4 x^3}{3}+\frac {x^4}{3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 39, normalized size = 1.70 \begin {gather*} \frac {1}{3} \left (9 e^{2 x}+9 x^2+4 x^3+x^4+e^x \left (81+36 x+10 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 36, normalized size = 1.57 \begin {gather*} \frac {1}{3} \, x^{4} + \frac {4}{3} \, x^{3} + 3 \, x^{2} + \frac {1}{3} \, {\left (10 \, x^{2} + 36 \, x + 81\right )} e^{x} + 3 \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 36, normalized size = 1.57 \begin {gather*} \frac {1}{3} \, x^{4} + \frac {4}{3} \, x^{3} + 3 \, x^{2} + \frac {1}{3} \, {\left (10 \, x^{2} + 36 \, x + 81\right )} e^{x} + 3 \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 37, normalized size = 1.61
method | result | size |
risch | \(3 \,{\mathrm e}^{2 x}+\frac {\left (10 x^{2}+36 x +81\right ) {\mathrm e}^{x}}{3}+\frac {x^{4}}{3}+\frac {4 x^{3}}{3}+3 x^{2}\) | \(37\) |
default | \(3 x^{2}+\frac {4 x^{3}}{3}+\frac {x^{4}}{3}+3 \,{\mathrm e}^{2 x}+12 \,{\mathrm e}^{x} x +27 \,{\mathrm e}^{x}+\frac {10 \,{\mathrm e}^{x} x^{2}}{3}\) | \(39\) |
norman | \(3 x^{2}+\frac {4 x^{3}}{3}+\frac {x^{4}}{3}+3 \,{\mathrm e}^{2 x}+12 \,{\mathrm e}^{x} x +27 \,{\mathrm e}^{x}+\frac {10 \,{\mathrm e}^{x} x^{2}}{3}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 36, normalized size = 1.57 \begin {gather*} \frac {1}{3} \, x^{4} + \frac {4}{3} \, x^{3} + 3 \, x^{2} + \frac {1}{3} \, {\left (10 \, x^{2} + 36 \, x + 81\right )} e^{x} + 3 \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.87, size = 38, normalized size = 1.65 \begin {gather*} 3\,{\mathrm {e}}^{2\,x}+27\,{\mathrm {e}}^x+\frac {10\,x^2\,{\mathrm {e}}^x}{3}+12\,x\,{\mathrm {e}}^x+3\,x^2+\frac {4\,x^3}{3}+\frac {x^4}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 37, normalized size = 1.61 \begin {gather*} \frac {x^{4}}{3} + \frac {4 x^{3}}{3} + 3 x^{2} + \frac {\left (10 x^{2} + 36 x + 81\right ) e^{x}}{3} + 3 e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________