Optimal. Leaf size=30 \[ \frac {20}{x \log ^2(2)}+\log (4-x+\log (3-x-(3-x) x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.76, antiderivative size = 25, normalized size of antiderivative = 0.83, number of steps used = 5, number of rules used = 4, integrand size = 114, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {6741, 12, 6728, 6684} \begin {gather*} \log \left (\log \left (x^2-4 x+3\right )-x+4\right )+\frac {20}{x \log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6728
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-240+380 x-160 x^2+20 x^3+\left (-7 x^2+6 x^3-x^4\right ) \log ^2(2)+\left (-60+80 x-20 x^2\right ) \log \left (3-4 x+x^2\right )}{x^2 \left (3-4 x+x^2\right ) \log ^2(2) \left (4-x+\log \left (3-4 x+x^2\right )\right )} \, dx\\ &=\frac {\int \frac {-240+380 x-160 x^2+20 x^3+\left (-7 x^2+6 x^3-x^4\right ) \log ^2(2)+\left (-60+80 x-20 x^2\right ) \log \left (3-4 x+x^2\right )}{x^2 \left (3-4 x+x^2\right ) \left (4-x+\log \left (3-4 x+x^2\right )\right )} \, dx}{\log ^2(2)}\\ &=\frac {\int \left (-\frac {20}{x^2}+\frac {\left (7-6 x+x^2\right ) \log ^2(2)}{(-3+x) (-1+x) \left (-4+x-\log \left (3-4 x+x^2\right )\right )}\right ) \, dx}{\log ^2(2)}\\ &=\frac {20}{x \log ^2(2)}+\int \frac {7-6 x+x^2}{(-3+x) (-1+x) \left (-4+x-\log \left (3-4 x+x^2\right )\right )} \, dx\\ &=\frac {20}{x \log ^2(2)}+\log \left (4-x+\log \left (3-4 x+x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 31, normalized size = 1.03 \begin {gather*} \frac {\frac {20}{x}+\log ^2(2) \log \left (4-x+\log \left (3-4 x+x^2\right )\right )}{\log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 31, normalized size = 1.03 \begin {gather*} \frac {x \log \relax (2)^{2} \log \left (-x + \log \left (x^{2} - 4 \, x + 3\right ) + 4\right ) + 20}{x \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 25, normalized size = 0.83 \begin {gather*} \frac {20}{x \log \relax (2)^{2}} + \log \left (x - \log \left (x^{2} - 4 \, x + 3\right ) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 26, normalized size = 0.87
method | result | size |
default | \(\frac {20}{\ln \relax (2)^{2} x}+\ln \left (x -\ln \left (x^{2}-4 x +3\right )-4\right )\) | \(26\) |
norman | \(\frac {20}{\ln \relax (2)^{2} x}+\ln \left (x -\ln \left (x^{2}-4 x +3\right )-4\right )\) | \(26\) |
risch | \(\frac {20}{\ln \relax (2)^{2} x}+\ln \left (\ln \left (x^{2}-4 x +3\right )-x +4\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.94, size = 24, normalized size = 0.80 \begin {gather*} \frac {20}{x \log \relax (2)^{2}} + \log \left (-x + \log \left (x - 1\right ) + \log \left (x - 3\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.89, size = 25, normalized size = 0.83 \begin {gather*} \ln \left (\ln \left (x^2-4\,x+3\right )-x+4\right )+\frac {20}{x\,{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 22, normalized size = 0.73 \begin {gather*} \log {\left (- x + \log {\left (x^{2} - 4 x + 3 \right )} + 4 \right )} + \frac {20}{x \log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________