Optimal. Leaf size=16 \[ \frac {6+x+\log (x)}{4 \left (-\frac {5}{2}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 32, normalized size of antiderivative = 2.00, number of steps used = 9, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {1594, 27, 12, 6742, 77, 2314, 31} \begin {gather*} -\frac {17}{4 (5-2 x)}-\frac {x \log (x)}{5 (5-2 x)}-\frac {\log (x)}{10} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 77
Rule 1594
Rule 2314
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5-15 x-2 x \log (x)}{x \left (50-40 x+8 x^2\right )} \, dx\\ &=\int \frac {-5-15 x-2 x \log (x)}{2 x (-5+2 x)^2} \, dx\\ &=\frac {1}{2} \int \frac {-5-15 x-2 x \log (x)}{x (-5+2 x)^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {5 (1+3 x)}{x (-5+2 x)^2}-\frac {2 \log (x)}{(-5+2 x)^2}\right ) \, dx\\ &=-\left (\frac {5}{2} \int \frac {1+3 x}{x (-5+2 x)^2} \, dx\right )-\int \frac {\log (x)}{(-5+2 x)^2} \, dx\\ &=-\frac {x \log (x)}{5 (5-2 x)}-\frac {1}{5} \int \frac {1}{-5+2 x} \, dx-\frac {5}{2} \int \left (\frac {1}{25 x}+\frac {17}{5 (-5+2 x)^2}-\frac {2}{25 (-5+2 x)}\right ) \, dx\\ &=-\frac {17}{4 (5-2 x)}-\frac {\log (x)}{10}-\frac {x \log (x)}{5 (5-2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 17, normalized size = 1.06 \begin {gather*} -\frac {17+2 \log (x)}{2 (10-4 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 15, normalized size = 0.94 \begin {gather*} \frac {2 \, \log \relax (x) + 17}{4 \, {\left (2 \, x - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 1.31 \begin {gather*} \frac {\log \relax (x)}{2 \, {\left (2 \, x - 5\right )}} + \frac {17}{4 \, {\left (2 \, x - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.94
method | result | size |
norman | \(\frac {\frac {\ln \relax (x )}{2}+\frac {17}{4}}{2 x -5}\) | \(15\) |
risch | \(\frac {\ln \relax (x )}{4 x -10}+\frac {17}{4 \left (2 x -5\right )}\) | \(22\) |
default | \(\frac {x \ln \relax (x )}{10 x -25}-\frac {\ln \relax (x )}{10}+\frac {17}{4 \left (2 x -5\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 21, normalized size = 1.31 \begin {gather*} \frac {\log \relax (x)}{2 \, {\left (2 \, x - 5\right )}} + \frac {17}{4 \, {\left (2 \, x - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.74, size = 14, normalized size = 0.88 \begin {gather*} \frac {\frac {\ln \relax (x)}{2}+\frac {17}{4}}{2\,x-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 14, normalized size = 0.88 \begin {gather*} \frac {17}{8 x - 20} + \frac {\log {\relax (x )}}{4 x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________