Optimal. Leaf size=24 \[ -x+\frac {1}{3 x^2 \left (\frac {1+x}{2}+\log (\log (5))\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.11, antiderivative size = 59, normalized size of antiderivative = 2.46, number of steps used = 4, number of rules used = 2, integrand size = 90, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6, 2074} \begin {gather*} \frac {2}{3 x^2 (1+2 \log (\log (5)))}-x+\frac {2}{3 (1+2 \log (\log (5)))^2 (x+1+2 \log (\log (5)))}-\frac {2}{3 x (1+2 \log (\log (5)))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4-6 x-6 x^4-3 x^5+\left (-8-12 x^3-12 x^4\right ) \log (\log (5))+x^3 \left (-3-12 \log ^2(\log (5))\right )}{3 x^3+6 x^4+3 x^5+\left (12 x^3+12 x^4\right ) \log (\log (5))+12 x^3 \log ^2(\log (5))} \, dx\\ &=\int \frac {-4-6 x-6 x^4-3 x^5+\left (-8-12 x^3-12 x^4\right ) \log (\log (5))+x^3 \left (-3-12 \log ^2(\log (5))\right )}{6 x^4+3 x^5+\left (12 x^3+12 x^4\right ) \log (\log (5))+x^3 \left (3+12 \log ^2(\log (5))\right )} \, dx\\ &=\int \left (-1+\frac {2}{3 x^2 (1+2 \log (\log (5)))^2}-\frac {4}{3 x^3 (1+2 \log (\log (5)))}-\frac {2}{3 (1+2 \log (\log (5)))^2 (1+x+2 \log (\log (5)))^2}\right ) \, dx\\ &=-x-\frac {2}{3 x (1+2 \log (\log (5)))^2}+\frac {2}{3 x^2 (1+2 \log (\log (5)))}+\frac {2}{3 (1+2 \log (\log (5)))^2 (1+x+2 \log (\log (5)))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 35, normalized size = 1.46 \begin {gather*} -\frac {-2+3 x^4+x^3 (3+6 \log (\log (5)))}{3 x^2 (1+x+2 \log (\log (5)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.49, size = 39, normalized size = 1.62 \begin {gather*} -\frac {3 \, x^{4} + 6 \, x^{3} \log \left (\log \relax (5)\right ) + 3 \, x^{3} - 2}{3 \, {\left (x^{3} + 2 \, x^{2} \log \left (\log \relax (5)\right ) + x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 61, normalized size = 2.54 \begin {gather*} -x + \frac {2}{3 \, {\left (4 \, \log \left (\log \relax (5)\right )^{2} + 4 \, \log \left (\log \relax (5)\right ) + 1\right )} {\left (x + 2 \, \log \left (\log \relax (5)\right ) + 1\right )}} - \frac {2 \, {\left (x - 2 \, \log \left (\log \relax (5)\right ) - 1\right )}}{3 \, {\left (4 \, \log \left (\log \relax (5)\right )^{2} + 4 \, \log \left (\log \relax (5)\right ) + 1\right )} x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 20, normalized size = 0.83
method | result | size |
risch | \(-x +\frac {2}{3 x^{2} \left (1+2 \ln \left (\ln \relax (5)\right )+x \right )}\) | \(20\) |
gosper | \(\frac {12 x^{2} \ln \left (\ln \relax (5)\right )^{2}-3 x^{4}+12 \ln \left (\ln \relax (5)\right ) x^{2}+3 x^{2}+2}{3 x^{2} \left (1+2 \ln \left (\ln \relax (5)\right )+x \right )}\) | \(46\) |
default | \(-x -\frac {2}{3 \left (1+2 \ln \left (\ln \relax (5)\right )\right )^{2} x}+\frac {2}{3 \left (1+2 \ln \left (\ln \relax (5)\right )\right ) x^{2}}+\frac {2}{3 \left (1+2 \ln \left (\ln \relax (5)\right )\right )^{2} \left (1+2 \ln \left (\ln \relax (5)\right )+x \right )}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 23, normalized size = 0.96 \begin {gather*} -x + \frac {2}{3 \, {\left (x^{3} + x^{2} {\left (2 \, \log \left (\log \relax (5)\right ) + 1\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 25, normalized size = 1.04 \begin {gather*} \frac {2}{3\,x^3+\left (6\,\ln \left (\ln \relax (5)\right )+3\right )\,x^2}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 19, normalized size = 0.79 \begin {gather*} - x + \frac {2}{3 x^{3} + x^{2} \left (6 \log {\left (\log {\relax (5 )} \right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________