Optimal. Leaf size=26 \[ \log \left (x-\log \left (\frac {1}{2} \left (-x+x^3+\log \left (e^{2 x}+\log (x)\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.11, antiderivative size = 24, normalized size of antiderivative = 0.92, number of steps used = 2, number of rules used = 2, integrand size = 198, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {6688, 6684} \begin {gather*} \log \left (-\log \left (x^3-x+\log \left (e^{2 x}+\log (x)\right )\right )+x+\log (2)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+e^{2 x} x+e^{2 x} x^2+3 e^{2 x} x^3-e^{2 x} x^4-e^{2 x} x \log \left (e^{2 x}+\log (x)\right )-x \log (x) \left (1-x-3 x^2+x^3+\log \left (e^{2 x}+\log (x)\right )\right )}{x \left (e^{2 x}+\log (x)\right ) \left (x-x^3-\log \left (e^{2 x}+\log (x)\right )\right ) \left (x+\log (2)-\log \left (-x+x^3+\log \left (e^{2 x}+\log (x)\right )\right )\right )} \, dx\\ &=\log \left (x+\log (2)-\log \left (-x+x^3+\log \left (e^{2 x}+\log (x)\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 24, normalized size = 0.92 \begin {gather*} \log \left (x+\log (2)-\log \left (-x+x^3+\log \left (e^{2 x}+\log (x)\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 25, normalized size = 0.96 \begin {gather*} \log \left (-x + \log \left (\frac {1}{2} \, x^{3} - \frac {1}{2} \, x + \frac {1}{2} \, \log \left (e^{\left (2 \, x\right )} + \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.16, size = 23, normalized size = 0.88 \begin {gather*} \log \left (x + \log \relax (2) - \log \left (x^{3} - x + \log \left (e^{\left (2 \, x\right )} + \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 26, normalized size = 1.00
method | result | size |
risch | \(\ln \left (\ln \left (\frac {\ln \left (\ln \relax (x )+{\mathrm e}^{2 x}\right )}{2}+\frac {x^{3}}{2}-\frac {x}{2}\right )-x \right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 25, normalized size = 0.96 \begin {gather*} \log \left (-x - \log \relax (2) + \log \left (x^{3} - x + \log \left (e^{\left (2 \, x\right )} + \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.90, size = 25, normalized size = 0.96 \begin {gather*} \ln \left (\ln \left (\frac {\ln \left ({\mathrm {e}}^{2\,x}+\ln \relax (x)\right )}{2}-\frac {x}{2}+\frac {x^3}{2}\right )-x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________