Optimal. Leaf size=25 \[ 5 \left (\frac {4+2 x}{x}+e^{-x} \left (16+x^4\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.92, antiderivative size = 33, normalized size of antiderivative = 1.32, number of steps used = 31, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6741, 12, 6742, 2194, 2176} \begin {gather*} 5 e^{-x} x^8+160 e^{-x} x^4+1280 e^{-x}+\frac {20}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^{-x} \left (-4 e^x-256 x^2+128 x^5-32 x^6+8 x^9-x^{10}\right )}{x^2} \, dx\\ &=5 \int \frac {e^{-x} \left (-4 e^x-256 x^2+128 x^5-32 x^6+8 x^9-x^{10}\right )}{x^2} \, dx\\ &=5 \int \left (-256 e^{-x}-\frac {4}{x^2}+128 e^{-x} x^3-32 e^{-x} x^4+8 e^{-x} x^7-e^{-x} x^8\right ) \, dx\\ &=\frac {20}{x}-5 \int e^{-x} x^8 \, dx+40 \int e^{-x} x^7 \, dx-160 \int e^{-x} x^4 \, dx+640 \int e^{-x} x^3 \, dx-1280 \int e^{-x} \, dx\\ &=1280 e^{-x}+\frac {20}{x}-640 e^{-x} x^3+160 e^{-x} x^4-40 e^{-x} x^7+5 e^{-x} x^8-40 \int e^{-x} x^7 \, dx+280 \int e^{-x} x^6 \, dx-640 \int e^{-x} x^3 \, dx+1920 \int e^{-x} x^2 \, dx\\ &=1280 e^{-x}+\frac {20}{x}-1920 e^{-x} x^2+160 e^{-x} x^4-280 e^{-x} x^6+5 e^{-x} x^8-280 \int e^{-x} x^6 \, dx+1680 \int e^{-x} x^5 \, dx-1920 \int e^{-x} x^2 \, dx+3840 \int e^{-x} x \, dx\\ &=1280 e^{-x}+\frac {20}{x}-3840 e^{-x} x+160 e^{-x} x^4-1680 e^{-x} x^5+5 e^{-x} x^8-1680 \int e^{-x} x^5 \, dx+3840 \int e^{-x} \, dx-3840 \int e^{-x} x \, dx+8400 \int e^{-x} x^4 \, dx\\ &=-2560 e^{-x}+\frac {20}{x}-8240 e^{-x} x^4+5 e^{-x} x^8-3840 \int e^{-x} \, dx-8400 \int e^{-x} x^4 \, dx+33600 \int e^{-x} x^3 \, dx\\ &=1280 e^{-x}+\frac {20}{x}-33600 e^{-x} x^3+160 e^{-x} x^4+5 e^{-x} x^8-33600 \int e^{-x} x^3 \, dx+100800 \int e^{-x} x^2 \, dx\\ &=1280 e^{-x}+\frac {20}{x}-100800 e^{-x} x^2+160 e^{-x} x^4+5 e^{-x} x^8-100800 \int e^{-x} x^2 \, dx+201600 \int e^{-x} x \, dx\\ &=1280 e^{-x}+\frac {20}{x}-201600 e^{-x} x+160 e^{-x} x^4+5 e^{-x} x^8+201600 \int e^{-x} \, dx-201600 \int e^{-x} x \, dx\\ &=-200320 e^{-x}+\frac {20}{x}+160 e^{-x} x^4+5 e^{-x} x^8-201600 \int e^{-x} \, dx\\ &=1280 e^{-x}+\frac {20}{x}+160 e^{-x} x^4+5 e^{-x} x^8\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 1.00 \begin {gather*} \frac {20}{x}-5 e^{-x} \left (-256-32 x^4-x^8\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.51, size = 25, normalized size = 1.00 \begin {gather*} \frac {5 \, {\left (x^{9} + 32 \, x^{5} + 256 \, x + 4 \, e^{x}\right )} e^{\left (-x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 31, normalized size = 1.24 \begin {gather*} \frac {5 \, {\left (x^{9} e^{\left (-x\right )} + 32 \, x^{5} e^{\left (-x\right )} + 256 \, x e^{\left (-x\right )} + 4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 24, normalized size = 0.96
method | result | size |
risch | \(\frac {20}{x}+\left (5 x^{8}+160 x^{4}+1280\right ) {\mathrm e}^{-x}\) | \(24\) |
norman | \(\frac {\left (1280 x +160 x^{5}+5 x^{9}+20 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-x}}{x}\) | \(27\) |
default | \(\frac {20}{x}+1280 \,{\mathrm e}^{-x}+160 x^{4} {\mathrm e}^{-x}+5 \,{\mathrm e}^{-x} x^{8}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 138, normalized size = 5.52 \begin {gather*} 5 \, {\left (x^{8} + 8 \, x^{7} + 56 \, x^{6} + 336 \, x^{5} + 1680 \, x^{4} + 6720 \, x^{3} + 20160 \, x^{2} + 40320 \, x + 40320\right )} e^{\left (-x\right )} - 40 \, {\left (x^{7} + 7 \, x^{6} + 42 \, x^{5} + 210 \, x^{4} + 840 \, x^{3} + 2520 \, x^{2} + 5040 \, x + 5040\right )} e^{\left (-x\right )} + 160 \, {\left (x^{4} + 4 \, x^{3} + 12 \, x^{2} + 24 \, x + 24\right )} e^{\left (-x\right )} - 640 \, {\left (x^{3} + 3 \, x^{2} + 6 \, x + 6\right )} e^{\left (-x\right )} + \frac {20}{x} + 1280 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.80, size = 19, normalized size = 0.76 \begin {gather*} 5\,{\mathrm {e}}^{-x}\,{\left (x^4+16\right )}^2+\frac {20}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.68 \begin {gather*} \left (5 x^{8} + 160 x^{4} + 1280\right ) e^{- x} + \frac {20}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________